Claude 的上下文检索功能提升了 RAG 准确率,这会是人工智能革命?

前言

在人工智能领域不断进步的过程中,人们对更准确且具备上下文理解能力的响应的追求,催生了诸多突破性创新。

而 Claude 的上下文检索技术就是其中一项进步,有望显著提升检索增强生成 (RAG) 系统的表现。

可能有同学就要问了:上下文检索技术是什么?

大白话来说,就是现在的AI越来越聪明了,尤其是在回答问题的时候,它可以更好地理解和利用上下文,而不仅仅是“查”到一些零碎的信息。

而本篇文章将讲解 Claude 先进的上下文检索技术如何提高 RAG 准确性,提高 AI 的知识检索能力,从而获得更精确、更具上下文感知的响应

如果你对Claude感兴趣的话,又很想升级Claude Pro,可以看看往期文章

RAG 革命及其局限性

RAG (检索增强生成)改变了游戏规则,为 AI 模型提供了庞大的知识库。

通过检索相关信息并将其纳入生成过程,RAG 系统使 AI 能够提供更明智、更准确的响应。

不过,传统的 RAG 解决方案往往难以保留上下文,导致系统无法检索最相关的信息。打个比方,你和AI聊了一阵,它可能忘记了前面说过的话,没法持续保持“记忆”,导致有时给出的信息不够准确。

而这种局限性在需要细致理解或特定领域知识的场景中尤为明显。例如,如果无法全面掌握业务背景,客户支持聊天机器人可能难以提供准确的帮助,而如果无法访问相关案例历史,法律分析机器人可能会失败。

进入上下文检索:范式转变

Anthropic 的上下文检索方法代表了解决这些挑战的重大飞跃。通过引入两个关键子技术——上下文嵌入上下文 BM25(下文会对这两个子技术进行解释)。

这两个技术的结合极大地改进了RAG系统的效果,这些创新之后的影响也是惊人的:

  • 仅上下文嵌入就将检索失败率降低了 35%(从 5.7% 降至 3.7%)。
  • 上下文嵌入和上下文 BM25 的组合进一步将失败率降低了 49%(从 5.7% 降至 2.9%)。
  • 与重新排序技术结合使用时,检索失败率可大幅降低 67%。

这些进步显著提高了搜索准确性,从而也提高了广泛 AI 应用的性能。

解读语境检索

上下文检索的核心就是尽量保留和利用相关的上下文信息,特别是在面对大型数据库和复杂问题时。这里面有两个关键部分:

  • 上下文嵌入

这个技术通过给每个文本片段加上背景信息,确保系统能理解这些片段的语义。简单来说,AI不仅知道每个词的意思,还知道它们背后的含义。

  • 上下文 BM25

这是结合了传统的文本匹配算法,确保AI可以处理那些对精确匹配有要求的查询。这样,AI既可以理解大概意思,又能精确找到关键字,适用于更多不同类型的问题。

重新构想检索过程

有了上下文检索,整个检索流程也变得更加优化。它包括:

文档分块和上下文生成
嵌入和 BM25 索引创建
搜索和排序
上下文融合和最终生成回答
这样,每个步骤都可以保持上下文,确保AI生成的答案更加相关。

重新排序:最后一步的优化

上下文检索的最后一步是“重新排序”,这相当于给找到的答案再打个分,确保最终传递给AI的内容是最相关的。

成本和效率考虑

而这么强大的技术也带来了计算成本的问题。为了应对这个挑战,Anthropic 引入了一个优化方案,叫做“即时缓存”。它可以存储和重复使用上下文信息,这样一来,系统的运行成本和时间都会大大降低。

实际效果是:

  • 上下文嵌入的生成成本降低了90%
  • 检索延迟减少了50%

这使得上下文检索不仅强大,而且在大规模应用中也变得可行。

现实中的应用

这种技术不只是理论上的进步,它可以真正改变很多AI应用。比如:

  • 客服系统可以提供更个性化的帮助
  • 法律AI可以更精准地分析案件
  • 研究助手可以更细致地提供信息
  • 内容推荐系统可以更好地匹配用户的需求

未来展望

尽管上下文检索已经取得了显著进步,这可能还只是个开始。未来的发展可能会让AI理解和利用上下文的能力更强,比如:

  • 更复杂的上下文生成
  • 与其他高级NLP模型的结合
  • 多模态检索,包括图像、音频和视频

这项技术将为更智能、更细腻的AI系统铺平道路。

最后有话说

Claude 的上下文检索技术确实为 AI 在理解和记忆对话背景方面带来了巨大的进步。它解决了传统 RAG 系统难以保持上下文的缺点,让 AI 能够给出更加准确、贴近用户需求的答案。这种技术特别适合复杂的、需要细致分析的场景,比如法律分析或客户支持。

不过,从长远来看,随着多模态技术的发展,如何在更多数据形式中应用上下文检索,仍是个值得期待的方向。总的来说,这是 AI 迈向更智能、更人性化的重要一步。

往期文章推荐:

(最新详细图文教程)如何注册升级Claude3大模型,Claude 3.5订阅升级教程以及防封号经验

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/53651.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

付费计量系统的标准化框架(中)

1.1通用过程 Generic processes See Clause 10 for a more complete definition of generic processes that are found in payment metering systems and those activities that are required to operate a payment metering system. Any specific system or sub-system imple…

uniapp实现在表单中展示多个选项,并且用户可以选择其中的一个或多个选项

前言 uni-data-checkbox是uni-app的一个组件,用于在表单中展示多个选项,并且用户可以选择其中的一个或多个选项。该组件可以通过设置不同的参数来控制选项的样式、布局和行为。 提示:以下是本篇文章正文内容,下面案例可供参考 uni-data-checkbox组件具有以下特点:: 1、跨…

Html--笔记01:使用软件vscode,简介Html5--基础骨架以及标题、段落、图片标签的使用

一.使用VSC--全称:Visual Studio Code vscode用来写html文件,打开文件夹与创建文件夹:①选择文件夹 ②拖拽文件 生成浏览器的html文件的快捷方式: !enter 运行代码到网页的方法: 普通方法&#xff1a…

linux命令记录 ss 和 lsof

ss ss 命令是 Linux 中用于查看和分析套接字(sockets)状态的工具,功能类似于 netstat,但提供了更快、更详细的信息。以下是对 ss 命令的详细介绍,包括常用选项及其用法: 基本用法 ss [选项]常用选项 -t…

Debian与Ubuntu:深入解读两大Linux发行版的历史与联系

Debian与Ubuntu:深入解读两大Linux发行版的历史与联系 引言 在开源操作系统的领域中,Debian和Ubuntu是两款备受瞩目的Linux发行版。它们不仅在技术上有着密切的联系,而且各自的发展历程和理念也对开源社区产生了深远的影响。本文将详细介绍…

从零开始学习Python

目录 从零开始学习Python 引言 环境搭建 安装Python解释器 选择IDE 基础语法 注释 变量和数据类型 变量命名规则 数据类型 运算符 算术运算符 比较运算符 逻辑运算符 输入和输出 控制流 条件语句 循环语句 for循环 while循环 循环控制语句 函数和模块 定…

【裸机装机系列】12.kali(ubuntu)-优化-减少var,tmp目录等存储占用空间

推荐阅读: 1.kali(ubuntu)-为什么弃用ubuntu,而选择基于debian的kali操作系统 如果你在安装partition disks的时候选择的是“separate /home,/var and /tmp paratitions”,会自动为你分区大小,由于自动分配的/var和/tmp分区比较小&#xff0c…

Robot Operating System——带有时间戳和坐标系信息的三维向量

大纲 应用场景1. 机器人运动控制场景描述具体应用 2. 传感器数据处理场景描述具体应用 3. 物体姿态表示场景描述具体应用 4. 物理仿真场景描述具体应用 5. 无人机飞行控制场景描述具体应用 6. 自动驾驶车辆控制场景描述具体应用 定义字段解释 案例 geometry_msgs::msg::Vector3…

丹摩智算(damodel)部署stable diffusion实验

名词解释: 丹摩智算(damodel):是一款带有RTX4090,Tesla-P40等显卡的公有云服务器。 stable diffusion:是一个大模型,可支持文生图,图生图,文生视频等功能 一.实验目标 …

SQLServer TOP(Transact-SQL)

1、本文内容 语法参数最佳实践兼容性支持互操作性限制和局限示例 适用于: Microsoft Fabric Microsoft FabricWarehouse 中的 SQL ServerAzure SQL 数据库Azure SQL 托管实例Azure SynapseAnalytics Analytics Platform System (PDW)SQL A…

Java中的数据一致性策略:从最终一致性到强一致性的选择

Java中的数据一致性策略:从最终一致性到强一致性的选择 大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天我们来讨论Java后端开发中非常重要的一个概念:数据一致性。数据…

MODELS 2024震撼续章:科技与可持续性的未来交响曲

MODELS 2024国际会议正如火如荼地进行着,每一天都充满了新的发现与启迪,每一场分享都是对技术前沿的一次深刻探索,更是对现实世界可持续性挑战的一次积极回应。现在让我们继续这场科技盛宴,看看小编为您精选几场的学术分享吧~ 会议…

地质工程专业职称申报条件详细解读

一、初级(助理)地质工程工程师评审条件: 1、理工类或者地质工程类专业毕业 2、专科毕业满3年或本科毕业满1年 3、研究生毕业,从事本专业技术工作,当年内考核认定 二、中级地质工程工程师评审条件: 1、理工…

【LeetCode刷题】链表篇

203. 移除链表元素 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}* ListNode(int val) { this.val val; }* ListNode(int val, ListNode next) { this.val val; this.next next; }* }*…

每天一道面试题(18):Redis 和 MySQL 如何保证数据一致性

引言 在现代分布式系统中,Redis 常被用作缓存层以提升应用性能,而 MySQL 则作为持久化存储。然而,由于二者的数据存储特性不同,保证 Redis 和 MySQL 之间的数据一致性是一个重要且复杂的问题。在这篇学习笔记中,我们将…

大数据 flink 01 | 从零环境搭建 简单Demo 运行

什么是Flink Flink是一个开源的流处理和批处理框架,它能够处理无界和有界的数据流,具有高吞吐量、低延迟和容错性等特点 Flink 可以应用于多个领域如:实时数据处理、数据分析、机器学习、事件驱动等。 什么是流式处理?什么是批处理 流处理…

xQTLs 共定位分析(XQTLbiolinks包)

XQTL 共定位分析 XQTLbiolinks 是一个端到端的生物信息学工具,由深圳湾实验室李磊研究团队开发,用于高效地分析公共或用户定制的个xQTLs数据。该软件提供了一个通过与 xQTLs 共定位分析进行疾病靶基因发现的流程,以检测易感基因和致病变异。…

vimax通信协议

关于“Vimax通信协议”,实际上可能存在一定的误解或混淆。在通信技术和网络领域,并没有广泛认知的名为“Vimax”的通信协议。然而,您可能是在询问关于“WiMAX”的信息,因为“WiMAX”与“Vimax”在发音上相近,且WiMAX是…

【STM32】RTT-Studio中HAL库开发教程七:IIC通信--EEPROM存储器FM24C04

文章目录 一、简介二、模拟IIC时序三、读写流程四、完整代码五、测试验证 一、简介 FM24C04D,4K串行EEPROM:内部32页,每个16字节,4K需要一个11位的数据字地址进行随机字寻址。FM24C04D提供4096位串行电可擦除和可编程只读存储器&a…

python学习记录3

目录 1、数据类型转换 2、eval函数 3、运算符 1、数据类型转换 变量类型的转换分为隐类转换和显类转换,隐类转换在python代码行中运行时就自动发生。例如 x ture print(x1) 显类转换使用函数完成,主要有以下几种: x 10 #整数默认是i…