Qwen 2.5:阿里巴巴集团的新一代大型语言模型

Qwen 2.5:阿里巴巴集团的新一代大型语言模型

摘要:

        在人工智能领域,大型语言模型(LLMs)的发展日新月异,它们在自然语言处理(NLP)和多模态任务中扮演着越来越重要的角色。阿里巴巴集团的Qwen团队最近推出了Qwen 2.5,这是其大语言模型系列的最新升级。本文将综述Qwen 2.5的主要特点、技术进步以及它在多模态交互和语言理解方面的应用潜力。

  1. 引言 随着人工智能技术的不断进步,大型语言模型已经成为推动自然语言处理领域发展的关键力量。Qwen 2.5的发布标志着阿里巴巴集团在这一领域的最新进展,它不仅在语言理解方面取得了显著提升,还在文本生成、视觉理解、音频理解等多个方面展现了卓越的能力。

  2. Qwen 2.5的主要特点 Qwen 2.5是阿里巴巴集团Qwen团队研发的新一代大型语言模型,它在以下方面展现了显著的特点和进步:

  • 参数规模:Qwen 2.5提供了从0.5B到72B不同参数规模的模型,以满足不同应用场景的需求。
  • 预训练数据:模型在包含18万亿tokens的大规模多语言和多模态数据集上进行预训练,确保了其在多样化数据上的强大表现。
  • 指令遵循与文本生成:Qwen 2.5在遵循指令和生成长文本方面的能力得到了显著提升,能够理解和生成结构化数据,如表格和JSON格式的输出。
  • 角色扮演与聊天机器人:模型增强了角色扮演的实现和聊天机器人的背景设置,使其在交互式应用中更加自然和适应性强。
  • 上下文长度:支持长达128K tokens的上下文长度,并能生成最多8K tokens的文本,这为处理长文本提供了可能。
  • 多语言支持:Qwen 2.5支持超过29种语言,包括中文、英文、法文、西班牙文等,使其具有广泛的国际适用性。
  1. 技术进步 Qwen 2.5的技术进步体现在以下几个方面:

  • 仅解码器稠密语言模型:Qwen 2.5采用了易于使用的仅解码器架构,提供了基模型和指令微调模型两种变体。
  • 预训练与微调:模型在高质量数据上进行后期微调,以贴近人类偏好,这在提升模型性能方面起到了关键作用。
  • 结构化数据理解:Qwen 2.5在理解结构化数据方面取得了显著进步,这对于处理表格、数据库和其他结构化信息尤为重要。
  1. 应用潜力 Qwen 2.5的多模态能力和语言理解能力使其在以下领域具有广泛的应用潜力:
  • 客户服务:作为聊天机器人,Qwen 2.5能够提供更加自然和准确的客户服务体验。
  • 内容创作:在文本生成方面,Qwen 2.5能够帮助用户快速生成高质量的内容。
  • 数据分析:Qwen 2.5的理解结构化数据的能力使其在数据分析和信息提取方面具有巨大潜力。
  • 教育和研究:Qwen 2.5的多语言支持为教育和研究提供了强大的工具,尤其是在语言学习和跨文化交流方面。

2. 代码使用

from transformers import AutoModelForCausalLM, AutoTokenizermodel_name = "Qwen/Qwen2.5-7B-Instruct"model = AutoModelForCausalLM.from_pretrained(model_name,torch_dtype="auto",device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)prompt = "Give me a short introduction to large language model."
messages = [{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(messages,tokenize=False,add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)generated_ids = model.generate(**model_inputs,max_new_tokens=512
)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

参考文献:

  • Qwen官方文档:Qwen
  • 代码: GitHub - QwenLM/Qwen2.5: Qwen2.5 is the large language model series developed by Qwen team, Alibaba Cloud.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/53151.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

探索RESTful风格的网络请求:构建高效、可维护的API接口【后端 20】

探索RESTful风格的网络请求:构建高效、可维护的API接口 在当今的软件开发领域,RESTful(Representational State Transfer)风格的网络请求已经成为构建Web服务和API接口的标配。RESTful风格以其简洁、无状态、可缓存以及分层系统等…

[数据集][目标检测]俯拍航拍森林火灾检测数据集VOC+YOLO格式6116张2类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):6116 标注数量(xml文件个数):6116 标注数量(txt文件个数):6116 标注…

神经网络通俗理解学习笔记(0) numpy、matplotlib

Numpy numpynumpy 基本介绍Ndarray对象及其创建Numpy数组的基础索引numpy数组的合并与拆分(重要)numpy数组的矩阵运算Numpy数组的统计运算numpy中的arg运算numpy中的神奇索引和比较 Matplotlib numpy numpy 基本介绍 numpy 大多数机器学习库都用了这个…

视频监控平台是如何运作的?EasyCVR视频汇聚平台的高效策略与实践

随着科技的飞速发展,视频监控平台在社会安全、企业管理、智慧城市构建等领域发挥着越来越重要的作用。一个高效的视频监控平台,不仅依赖于先进的硬件设备,更离不开强大的视频处理技术作为支撑。这些平台集成了多种先进的视频技术,…

Python 如何封装工具类方法,以及使用md5加密

第一步:封装使用方法 在utils目录中,编写我的md5加密的方法,如下: import re import hashlib from os import path from typing import Callable from flask import current_app# 这里封装的是工具类的方法def basename(filenam…

Redis实现发布/订阅功能(实战篇)

前言 博主在学习 Redis 实现发布订阅功能的时候,踩了太多的坑。 不是讲解不详细,看的一知半解;就是代码有问题,实际压根跑不起来! 于是博主萌生了自己写一个最新版且全程无错的博客供各位参考。希望各位不要把我才过…

【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧

文章目录 Python NumPy学习指南前言第六部分:NumPy在科学计算中的应用1. 数值积分使用梯形规则进行数值积分使用Simpson规则进行数值积分 2. 求解微分方程通过Euler方法求解一阶常微分方程使用scipy.integrate.solve_ivp求解常微分方程 3. 随机过程模拟模拟布朗运动…

Llama 3.1 Omni:颠覆性的文本与语音双输出模型

你可能听说过不少关于语言模型的进展,但如果告诉你,有一种模型不仅能生成文本,还能同时生成语音,你会不会觉得特别酷?今天咱们就来聊聊一个相当前沿的项目——Llama 3.1 Omni模型。这个模型打破了传统的文字生成边界,直接让文本和语音同时输出,实现了真正的"多模态…

网络爬虫到底难在哪里?

如果你是自己做爬虫脚本开发,那确实难,因为你需要掌握Python、HTML、JS、xpath、database等技术,而且还要处理反爬、动态网页、逆向等情况,不然压根不知道怎么去写代码,这些技术和经验储备起码得要个三五年。 比如这几…

基于milvus数据库的RAG-Demo

1.上传文本并将文本向量化 import os from django.conf import settings from langchain.document_loaders import TextLoader from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter from langchain.vectorstores import Chroma from l…

C++掉血迷宫

目录 开头程序程序的流程图程序游玩的效果下一篇博客要说的东西 开头 大家好&#xff0c;我叫这是我58。 程序 #include <iostream> #include <string> #include <cstring> using namespace std; enum RBYG {R 1,B 2,Y 4,G 7, }; struct heal {int ix…

Linux服务器本地部署Joplin Server并实现手机电脑多端同步文档

文章目录 前言1. 安装Docker2. 自建Joplin服务器3. 搭建Joplin Sever4. 安装cpolar内网穿透5. 创建远程连接的固定公网地址 前言 本文主要介绍如何在自己的服务器上利用docker搭建 Joplin Server&#xff0c;并对同步进行配置&#xff0c;再结合cpolar内网穿透工具实现公网远程…

学习Stable Diffusion使用 Roop插件轻松换脸(附插件)

在今天的分享中&#xff0c;将了解到如何获取并应用StableDiffusion的Roop插件&#xff0c;以达到完美的面部替换效果。 Roop是一款强大的工具&#xff0c;使您能够轻松地交换面孔并达到逼真的效果。 无论是艺术家、内容创作者&#xff0c;还是仅仅想要尝试图像处理的乐趣&am…

关于Vue2里 v-for和v-if一起用的时候会出现的问题

关于Vue2里 v-for和v-if一起用的时候会出现的问题 &#x1f389;&#x1f389;&#x1f389;欢迎来到我的博客,我是一名自学了2年半前端的大一学生,熟悉的技术是JavaScript与Vue.目前正在往全栈方向前进, 如果我的博客给您带来了帮助欢迎您关注我,我将会持续不断的更新文章!!!&…

使用cmd命令窗口操作mongodb

一、效果显示 二、下载MongoDB 1. 在官网下载安装MongoDB 官网网址&#xff1a;Download MongoDB Community Server | MongoDB 我安装的版本是7.0.14(注意安装到空闲磁盘) 三、启动MongoDB服务 1. 配置环境变量 注意替换为你的路径。 2. 在MongoDB的data下创建db文件夹 在…

51单片机应用开发---二进制、十六进制与单片机寄存器之间的关系(跑马灯、流水灯实例)

实现目标 1、掌握二进制与十六进制之间的转换 2、掌握单片机寄存器与二进制、十六进制之间的转换 3、掌握单片机驱动跑马灯、流水灯的原理 一、二进制与十六进制之间的转换 1、二进制 二进制&#xff08;binary&#xff09;&#xff0c; 是在数学和数字电路中以2为基数的…

计算机毕业设计 乡村生活垃圾管理系统的设计与实现 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…

Java接口与继承:构建灵活系统的基石

在Java编程语言中&#xff0c;接口&#xff08;Interface&#xff09;是一种定义方法规范的类型&#xff0c;它是一种特殊的抽象类&#xff0c;可以被类实现&#xff08;Implement&#xff09;或被其他接口继承&#xff08;Extend&#xff09;。接口是Java实现多态和模块化设计…

无人机之控制距离篇

无人机的控制距离是一个复杂且多变的概念&#xff0c;它受到多种因素的共同影响。以下是对无人机控制距离及其影响因素的详细分析&#xff1a; 一、无人机控制距离的定义 无人机控制距离指的是遥控器和接收机之间的最远传输距离。这个距离决定了无人机在操作者控制下能够飞行的…

前端实战:使用JS和Canvas实现运算图形验证码(uniapp、微信小程序同样可用)

图形验证码是网站安全防护的重要组成部分&#xff0c;能有效防止自动化脚本进行恶意操作&#xff0c;如何实现一个简单的运算图形验证码&#xff1f;本文封装了一个简单的js类&#xff0c;可以用于生成简单但安全的图形验证码。它支持自定义验证码样式&#xff0c;包括字体大小…