一、1×1卷积的作用
我们先来给出1×1卷积的一般作用,如下所示:
1.1 特征通道的升维与降维/跨通道的特征整合/简化模型
输入数据:64×64@192,卷积核:1×1@192
输出数据:64×64@1
- 特征通道的升维与降维
从上图可以得知,对形式为64×64@192的输入数据使用1×1@192的卷积核进行卷积操作时,可以得到一个64×64@1的特征图,在这个过程中,在不影响特征图的结构大小的前提下降低了特征图的通道数,相当于大幅度降低了特征图的数量。
当只有一个1×1卷积核时,输出特征图的通道数为1,此时相当于特征通道降维;若有比输入数据的通道数多的卷积核时,则此时相当于特征通道的升维。
结论:每个1×1卷积核相当于在输入数据的通道上做了一个降维(经过一个神经元个数为1的全连接层),从而相当于大幅度降低了特征图的数量,但不影响特征图的结构。
- 跨通道的信息融合(特征整合)
1×1卷积用于跨通道整合特征,通过对每个像素点应用 1×1 大小的卷积核,来实现不同通道之间的线性组合。这种操作不会改变空间维度,但能有效地整合来自不同通道的信息,进而生成新的特征表示。它在减少计算量的同时,能够保留和处理通道间的复杂关系,是深度神经网络中常用的操作,特别是在轻量化模型如MobileNet中,用于特征融合。
1×1卷积核可以减少权重参数的原因是,它只在通道维度上进行操作,不会影响空间维度(宽度和高度)。相比标准的卷积核(如3×3或5×5),1×1卷积核不涉及空间范围内的特征提取,只是在每个像素位置跨通道进行线性组合。
- 减少权重参数
具体来说,假设输入特征图的大小为 H×W×M(高度、宽度、通道数),并且输出特征图的通道数为 N,那么:
- 对于标准的3×3卷积核,权重参数的数量为 3×3×M×N=9MN。
- 对于1×1卷积核,权重参数的数量为 1×1×M×N=MN。
因此,1×1卷积核的参数数量为标准3×3卷积核的九分之一,极大地减少了网络的权重参数,同时还能够通过跨通道操作保持一定的特征整合能力。这种特性使得1×1卷积在轻量化网络(如MobileNet)中被广泛使用,能够减少计算量和存储需求。