Pyspark下操作dataframe方法(1)

文章目录

  • Pyspark dataframe
    • 创建DataFrame
      • 使用Row对象
      • 使用元组与scheam
      • 使用字典与scheam
      • 注意
    • agg 聚合操作
    • alias 设置别名
      • 字段设置别名
      • 设置dataframe别名
    • cache 缓存
    • checkpoint RDD持久化到外部存储
    • coalesce 设置dataframe分区数量
    • collect 拉取数据
    • columns 获取dataframe列

Pyspark dataframe

创建DataFrame

from pyspark.sql import  SparkSession,Row
from pyspark.sql.types import *def init_spark():spark  = SparkSession.builder.appName('LDSX_TEST_DATAFrame') \.config('hive.metastore.uris', 'thrift://hadoop01:9083') \.config('spark.master', "local[2]") \.enableHiveSupport().getOrCreate()return spark
spark = init_spark()# 设置字段类型
schema = StructType([StructField("name", StringType(), True),StructField("age", StringType(), True),StructField("id", StringType(), True),StructField("gender", StringType(), True),
])

使用Row对象

cs = Row('name','age','id','gender')
row_list = [ cs('ldsx','12','1','男'),cs('test1','20','1','女'),cs('test2','26','1','男'),cs('test3','19','1','女'),cs('test4','51','1','女'),cs('test5','13','1','男')]
data = spark.createDataFrame(row_list)
data.show()+-----+---+---+---+
| name|age| id|gender|
+-----+---+---+---+
| ldsx| 12|  1| 男|
|test1| 20|  1| 女|
|test2| 26|  1| 男|
|test3| 19|  1| 女|
|test4| 51|  1| 女|
|test5| 13|  1| 男|
+-----+---+---+---+
data.printSchema()
root|-- name: string (nullable = true)|-- age: string (nullable = true)|-- id: string (nullable = true)|-- gender: string (nullable = true)

使用元组与scheam

park.createDataFrame([('ldsx1','12','1','男'),('ldsx2','12','1','男')],schema).show()
+-----+---+---+------+
| name|age| id|gender|
+-----+---+---+------+
|ldsx1| 12|  1|    男|
|ldsx2| 12|  1|    男|
+-----+---+---+------+

使用字典与scheam

spark.createDataFrame([{'name':'ldsx','age':'12','id':'1','gender':'女'}]).show()
+---+------+---+----+
|age|gender| id|name|
+---+------+---+----+
| 12|    女|  1|ldsx|
+---+------+---+----+

注意

scheam设置优先级高于row设置,dict设置的key

schema = StructType([StructField("name", StringType(), True),StructField("age", StringType(), True),StructField("id", StringType(), True),StructField("测试", StringType(), True),
])
spark.createDataFrame([{'name':'ldsx','age':'12','id':'1','gender':'女'}],schema).show()
+----+---+---+----+
|name|age| id|测试|
+----+---+---+----+
|ldsx| 12|  1|null|
+----+---+---+----+

agg 聚合操作

在 PySpark 中,agg(aggregate)函数用于对 DataFrame 进行聚合操作。它允许你在一个或多个列上应用一个或多个聚合函数,并返回计算后的结果。可以结合groupby使用。

from pyspark.sql import functions as sf
data.show()
+-----+---+---+------+
| name|age| id|gender|
+-----+---+---+------+
| ldsx| 12|  1|    男|
|test1| 20|  1|    女|
|test2| 26|  1|    男|
|test3| 19|  1|    女|
|test4| 51|  1|    女|
|test5| 13|  1|    男|
+-----+---+---+------+
data.agg({'age':'max'}).show()
+--------+
|max(age)|
+--------+
|      51|
+--------+
data.agg({'age':'max','gender':"max"}).show()
+-----------+--------+
|max(gender)|max(age)|
+-----------+--------+
|         男|      51|
+-----------+--------+data.agg(sf.min(data.age)).show()
+--------+
|min(age)|
+--------+
|      12|
+--------+
data.agg(sf.min(data.age),sf.min(data.name)).show()
+--------+---------+
|min(age)|min(name)|
+--------+---------+
|      12|     ldsx|
+--------+---------+

结合groupby使用

data.groupBy('gender').agg(sf.min('age')).show()+------+--------+
|gender|min(age)|
+------+--------+
|    女|      19|
|    男|      12|
+------+--------+
data.groupBy('gender').agg(sf.min('age'),sf.max('name')).show()
+------+--------+---------+
|gender|min(age)|max(name)|
+------+--------+---------+
|    女|      19|    test4|
|    男|      12|    test5|
+------+--------+---------+

alias 设置别名

字段设置别名

#字段设置别名
data.select(data['name'].alias('rename_name')).show()
+-----------+
|rename_name|
+-----------+
|       ldsx|
|      test1|
|      test2|
|      test3|
|      test4|
|      test5|
+-----------+

设置dataframe别名

d1 = data.alias('ldsx1')
d2 = data2.alias('ldsx2')
d1.show()
+-----+---+---+------+
| name|age| id|gender|
+-----+---+---+------+
| ldsx| 12|  1|    男|
|test1| 20|  1|    女|
|test2| 26|  1|    男|
|test3| 19|  1|    女|
|test4| 51|  1|    女|
|test5| 13|  1|    男|
+-----+---+---+------+
d2.show()
+-----+---+---+------+
| name|age| id|gender|
+-----+---+---+------+
|测试1| 12|  1|    男|
|测试2| 20|  1|    男|
+-----+---+---+------+d3 = d1.join(d2,col('ldsx1.gender')==col('ldsx2.gender'),'inner')
d3.show()
+-----+---+---+------+-----+---+---+------+
| name|age| id|gender| name|age| id|gender|
+-----+---+---+------+-----+---+---+------+
| ldsx| 12|  1|    男|测试1| 12|  1|    男|
| ldsx| 12|  1|    男|测试2| 20|  1|    男|
|test2| 26|  1|    男|测试1| 12|  1|    男|
|test2| 26|  1|    男|测试2| 20|  1|    男|
|test5| 13|  1|    男|测试1| 12|  1|    男|
|test5| 13|  1|    男|测试2| 20|  1|    男|
+-----+---+---+------+-----+---+---+------+d3[['name']].show()
#报错提示
pyspark.errors.exceptions.captured.AnalysisException: [AMBIGUOUS_REFERENCE] Reference `name` is ambiguous, could be: [`ldsx1`.`name`, `ldsx2`.`name`].
# 使用别名前缀获取
d3[['ldsx1.name']].show()
+-----+
| name|
+-----+
| ldsx|
| ldsx|
|test2|
|test2|
|test5|
|test5|
+-----+
>>> d3[['ldsx2.name']].show()
+-----+
| name|
+-----+
|测试1|
|测试2|
|测试1|
|测试2|
|测试1|
|测试2|
+-----+
d3.select('ldsx1.name','ldsx2.name').show()
+-----+-----+
| name| name|
+-----+-----+
| ldsx|测试1|
| ldsx|测试2|
|test2|测试1|
|test2|测试2|
|test5|测试1|
|test5|测试2|
+-----+-----+

cache 缓存

dataframe缓存默认缓存级别MEMORY_AND_DISK_DESER

df.cache()
# 查看逻辑计划和物理计划
df.explain()

checkpoint RDD持久化到外部存储

Checkpoint是一种重量级的使用,也就是RDD的重新计算成本很高的时候,我们采用Checkpoint比较合适,或者数据量很大的时候,采用Checkpoint比较合适。如果数据量小,或者RDD重新计算也是非常快的,直接使用缓存即可。
CheckPoint支持写入HDFS。CheckPoint被认为是安全的

sc = spark.sparkContext
# 设置检查存储目录
sc.setCheckpointDir('hdfs:///ldsx_checkpoint')
d3.count()
# 保存会在hdfs上进行存储
d3.checkpoint()
# 从hdfs读取
d3.count()

在这里插入图片描述

coalesce 设置dataframe分区数量

# 设置dataframe分区数量
d3 = d3.coalesce(3)
# 获取分区数量
d3.rdd.getNumPartitions()

collect 拉取数据

当任务提交到集群的时候collect()操作是用来将所有结点中的数据收集到dirver节点,数据量很大慎用防止dirver炸掉。

d3.collect()
[Row(name='ldsx', age='12', id='1', gender='男', name='测试1', age='12', id='1', gender='男'), Row(name='ldsx', age='12', id='1', gender='男', name='测试2', age='20', id='1', gender='男'), Row(name='test2', age='26', id='1', gender='男', name='测试1', age='12', id='1', gender='男'), Row(name='test2', age='26', id='1', gender='男', name='测试2', age='20', id='1', gender='男'), Row(name='test5', age='13', id='1', gender='男', name='测试1', age='12', id='1', gender='男'), Row(name='test5', age='13', id='1', gender='男', name='测试2', age='20', id='1', gender='男')]

columns 获取dataframe列

>>> d3.columns
['name', 'age', 'id', 'gender', 'name', 'age', 'id', 'gender']d3.withColumn('ldsx1.name_1',col('ldsx1.name')).show()
+-----+---+---+------+-----+---+---+------+------------+
| name|age| id|gender| name|age| id|gender|ldsx1.name_1|
+-----+---+---+------+-----+---+---+------+------------+
| ldsx| 12|  1|    男|测试1| 12|  1|    男|        ldsx|
| ldsx| 12|  1|    男|测试2| 20|  1|    男|        ldsx|
|test2| 26|  1|    男|测试1| 12|  1|    男|       test2|
|test2| 26|  1|    男|测试2| 20|  1|    男|       test2|
|test5| 13|  1|    男|测试1| 12|  1|    男|       test5|
|test5| 13|  1|    男|测试2| 20|  1|    男|       test5|
+-----+---+---+------+-----+---+---+------+------------+# 重命名列名
d3.withColumnRenamed('ldsx1.name_1',col('ldsx1.name')).show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/52616.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[数据集][目标检测]智慧农业草莓叶子病虫害检测数据集VOC+YOLO格式4040张9类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4040 标注数量(xml文件个数):4040 标注数量(txt文件个数):4040 标注…

【小沐学OpenGL】Ubuntu环境下glew的安装和使用

文章目录 1、简介1.1 OpenGL简介1.2 glew简介 2、安装glew2.1 命令安装glew2.2 直接代码安装glew2.3 cmake代码安装glew 3、测试glew3.1 测试glewfreeglut3.2 测试glewglfw 结语 1、简介 1.1 OpenGL简介 Linux 系统中的 OpenGL 是一个跨语言、跨平台的应用程序编程接口&#…

多态的概念

多态 所谓的多态其实就是多种形态,它又被分为编译时多态(静态多态) 和 运行时多态(动态多态)。 静态的多态其实就是之前的模版和函数重载,今天我们主要讲动态的多态。所谓的动态多态其实就是相同的函数,完成不同的功能。 这就实现了明明都是…

《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》P84

更正卷积与相关微课中互相关运算动画中的索引。 1-D correlation rectwave 禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》 禹晶、肖创柏、廖庆敏《数字图像处理》资源二维码

【Linux实践】实验一:Linux系统安装与启动

【Linux实践】实验一:Linux系统安装与启动 实验目的实验内容实验步骤及结果1. 下载VMware2. 下载 Linux 操作系统3. 在VMware中安装Ubuntu系统4. 配置Ubuntu系统5. 关机 实验目的 1.掌握Linux系统的安装过程和简单配置方法。 2.掌握与Linux相关的多操作系统的安装方…

【Leetcode算法面试题】-1. 两数之和

文章目录 算法练习题目思路参考答案算法1算法2算法3 算法练习 面试经常会遇到算法题目,今天开启算法专栏,常用算法解析 题目 ** 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数&…

为拖延症量身定制的AI工具,让Kimi做我的《每日信息整理助手》

AI不止对传统行业带来巨大的改变,对日常生活也便利了不少,现在这个时代获取信息的方式太简单了。 我们每天都会接受大量的信息,难免一天下来会忘记很多事情,有时候突然想起了一个点子,有时候突然有一件急事、一件待办事…

17 个被动和主动遥感之间的区别

摘要: 遥感是指通过使用连接到卫星的传感器记录有关地球表面信息的行为。遥感在收集大面积信息、表征地球上的自然特征、观察和监测地球和物体随时间的变化以及 利用这些信息进行处理和分析方面发挥着至关重要的作用。在遥感中,太阳是终极能源,对照明非常有用。卫星具有成像传…

LCS—最长公共子序列

最长公共子序列问题就是求出两个字符串的LCS长度,是一道非常经典的面试题目,因为它的解法是典型的二维动态规划。 比如输入 str1 "babcde", str2 "acbe",算法应该输出3,因为 str1 和 str2 的最长公共子序列…

金属铬厂商分析:前十强厂商占有大约64.0%的市场份额

金属铬是一种灰色、有光泽、硬而脆的过渡金属。铬是不锈钢的主要添加剂,可增加耐腐蚀性。 据QYResearch调研团队最新报告“全球金属铬市场报告2024-2030”显示,预计2030年全球金属铬市场规模将达到11.8亿美元,未来几年年复合增长率CAGR为6.5%…

Spring Cloud之三 网关 Gateway

1:Intellij 新建项目 spring-cloud-gateway 2:pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLoca…

CnCrypt(磁盘加密工具绿色版是一款功能强大磁盘加密工具,供大家学习研究参考

CnCrypt(磁盘加密工具)特点 加密单个分区或整个硬盘,所有加密都是以分区为基础的 提供两级方案,以应对被强迫说出密码的情况(如抢劫。隐藏分区(覆盖式密码术,steganography)无法探测到CnCrypt 加密分区(加密数据会被认为是随机数据)。 CnCrypt(磁盘加密工具)特色 1、加密U…

【C++】C++ STL 探索:List使用与背后底层逻辑

C语法相关知识点可以通过点击以下链接进行学习一起加油&#xff01;命名空间缺省参数与函数重载C相关特性类和对象-上篇类和对象-中篇类和对象-下篇日期类C/C内存管理模板初阶String使用String模拟实现Vector使用及其模拟实现 本文将通过模拟实现List&#xff0c;从多个角度深入…

vue-router + el-menu

1. el-menu的router属性 在el-menu中有一属性&#xff1a;router&#xff0c;默认是false 1.1 使用默认配置&#xff0c;即false 这时候需要自己在点击子菜单的时候进行导航&#xff0c;在el-menu添加方法&#xff0c;里边有三个参数 index: 选中菜单项的 index,indexPath…

本地部署大语言模型详细操作步骤

本地部署大语言模型&#xff0c;尤其是像我这样的基于中文开源项目的大模型&#xff0c;涉及的步骤相对复杂&#xff0c;需要一定的技术背景。下面我将详细阐述整个流程&#xff1a; 环境准备&#xff1a; 硬件准备&#xff1a;大语言模型通常需要高性能的计算资源&#xff0c;…

uni-app实现web-view和App之间的相互通信

双向实时 如果app端部署成网站&#xff0c;则web-view就是iframe&#xff0c;使用也可以双向通讯 https://uniapp.dcloud.net.cn/component/web-view.html APP端代码 index.vue: <template><web-viewid"m-webview":fullscreen"true":src"…

不同vlan之间的通信方法

1.通过路由器的物理接口 1.给PC1,PC2配置IP地址&#xff0c;网关2.进入交换机配置vlan&#xff0c;交换机所有口都配置access口并绑定vlan3.配置路由器&#xff0c;进入路由器的两个接口配置网关IP和掩码缺点&#xff1a;成本高&#xff0c;每增加一个vlan就需要一个物理端口和…

辛巴赔付到账,罗永浩退一赔三:直播带货终于往好方向卷了下…

因为快手顶流辛巴扔出的一颗重磅炸弹「被辛巴架火上烤&#xff0c;带货顶流圈快乱成一锅粥了……」&#xff0c;把直播带货行业藏在深处的淤泥炸出了水面。 原本表面看上去清澈、安静的水面&#xff0c;越来越浑&#xff0c;且还冒着火星子&#xff01;‍‍‍‍‍‍‍ 自从这个…

无人机电调接线

接线方式&#xff1a; 电调的作用是将飞控板的PWM控制信号转变为电流信号 因为电机的电流是很大的&#xff0c;通常每个点击正常工作时都平均有3A左右的电流&#xff0c;如果没有电调的存在&#xff0c;飞控无法承受这么大的电流。 电调的选择&#xff1a;电调上标的电流值是…

六、图结构

文章目录 一、引入二、基本概念三、图的表示四、图的遍历4.1 图的深度优先遍历&#xff08;DFS&#xff09;4.2 图的广度优先遍历&#xff08;BFS&#xff09;4.3 图的深度优先 VS 广度优先 一、引入 二、基本概念 三、图的表示 package com.gyh.grapg;import java.util.ArrayL…