文章目录
- 1、Redis数据结构
- 1.1 动态字符串
- 1.2 intset
- 1.3 Dict
- 1.4 ZipList
- 1.5 ZipList的连锁更新问题
- 1.6 QuickList
- 1.7 SkipList
- 1.8 RedisObject
- 2、五种数据类型
- 2.1 String
- 2.2 List
- 2.3 Set
- 2.4 ZSET
- 2.5 Hash
1、Redis数据结构
1.1 动态字符串
Redis中保存的Key是字符串,value往往是字符串或者字符串的集合。可见字符串是Redis中最常用的一种数据结构。
不过Redis没有直接使用C语言中的字符串,因为C语言字符串存在很多问题:
- 获取字符串长度的需要通过运算:字符串都以
\0
结尾,因此计算长度时,需要遍历一遍,直到读到\0
- 非二进制安全:C语言不允许字符串中字符有
\0
,因为有的话会被当做字符串结束标识- 不可修改:字符串在内存常量池,不能修改
Redis构建了一种新的字符串结构,称为简单动态字符串(Simple Dynamic String),简称SDS
例如:我们执行set name zs
这条命令,Redis将在底层创建两个SDS,其中一个是包含name
的SDS,另一个是包含zs
的SDS。
Redis中SDS源码
Redis中的SDS有5种类型,根据占用的空间,使用不同的类型,例如sdshdr8
中len
和alloc
都是uint8_t
类型的,表示最多255个字节,其中有一个字节是\0
,因此最多存储254个字节数据,flags
字段就表示当前SDS是那种类型的,buf
中存储的就是真正的字符串
struct __attribute__ ((__packed__)) sdshdr5 {unsigned char flags; /* 3 lsb of type, and 5 msb of string length */char buf[];
};
struct __attribute__ ((__packed__)) sdshdr8 {uint8_t len; /* buf已保存的字符串字节数,不包含结束标识 */uint8_t alloc; /* buf申请的总字节数 */unsigned char flags; /* 不同的SDS类型(0,1,2,3,4) */char buf[]; /* 真正存放字符串的地方 */
};
struct __attribute__ ((__packed__)) sdshdr16 {uint16_t len; /* used */uint16_t alloc; /* excluding the header and null terminator */unsigned char flags; /* 3 lsb of type, 5 unused bits */char buf[];
};
struct __attribute__ ((__packed__)) sdshdr32 {uint32_t len; /* used */uint32_t alloc; /* excluding the header and null terminator */unsigned char flags; /* 3 lsb of type, 5 unused bits */char buf[];
};
struct __attribute__ ((__packed__)) sdshdr64 {uint64_t len; /* used */uint64_t alloc; /* excluding the header and null terminator */unsigned char flags; /* 3 lsb of type, 5 unused bits */char buf[];
};#define SDS_TYPE_5 0
#define SDS_TYPE_8 1
#define SDS_TYPE_16 2
#define SDS_TYPE_32 3
#define SDS_TYPE_64 4
一个包含字符串name
的sds结构如下:第一次申请时,len
和alloc
长度是一样的,他们记录的值不包括\0
,因此实际数据占用5个字节
SDS的扩容
一个内容为hi
的字符串,初始时len
和alloc
都为2,此时要给SDS追加一段字符串,Amy
,这里首先会申请新内存空间:
-
如果新字符串小于1M,则新空间为扩展后字符串长度的两倍+1,这里+1其实是给
\0
使用的 -
如果新字符串大于1M,则新空间为扩展后字符串长度+1M+1。称为内存预分配,因为申请内存需要从用户态转为内核态,非常消耗性能,采用内存预分配后,下次再追加字符串,只要不超过最大长度,就不用去申请内存,提升性能
因此原字符串hi
追加,Amy
后长度为6个字节,小于1M,所以申请新内存空间为13字节,此时len
为6表示字符串占用空间,alloc
为12表示申请的空间,不包括\0
的这一个字节
SDS优点
- 获取字符串长度的时间复杂度为
O(1)
,直接读取len
字段即可 - 支持动态扩容
- 减少内存分配次数
- 二进制安全,读取字符串时,按照
len
指定长度读取,即使读取到\0
也不会有影响
1.2 intset
IntSet是Redis中set集合的一种实现方式,基于整数数组来实现,并且具备长度可变、有序等特征。
typedef struct intset {uint32_t encoding; // 编码方式,支持存放16位,32位,64位整数,下边有定义uint32_t length; // 元素个数int8_t contents[]; // 整数数组,contents类型为int8_t原因是它是一个指针,指向的是数组首地址,数组中元素的数据类型是通过encoding指定的
} intset;
#define INTSET_ENC_INT16 (sizeof(int16_t))
#define INTSET_ENC_INT32 (sizeof(int32_t))
#define INTSET_ENC_INT64 (sizeof(int64_t))
为了方便查找,Redis会将intset中所有的整数按照升序依次保存在contents数组中
现在,数组中每个数字都在int16_t
的范围内,因此采用的编码方式是INTSET_ENC_INT16
encoding
:4字节length
:4字节contents
:2字节 * 3 = 6字节
此时,我们向其中添加一个数字:50000,这个数字超出了int16_t
的范围,intset会自动升级编码方式到合适的大小。
- 升级编码为
INTSET_ENC_INT32
, 每个整数占4字节,并按照新的编码方式及元素个数扩容数组 - 倒序依次将数组中的元素拷贝到扩容后的正确位置
- 将待添加的元素放入数组末尾
- 最后,将inset的
encoding
属性改为INTSET_ENC_INT32
,将length
属性改为4
源码分析
inset添加元素
// is是当前inset集合,value是添加的元素
intset *intsetAdd(intset *is, int64_t value, uint8_t *success) {// 获取当前元素编码uint8_t valenc = _intsetValueEncoding(value);// 记录添加的位置uint32_t pos;if (success) *success = 1;// 判断编码是不是超过了当前inset的编码if (valenc > intrev32ifbe(is->encoding)) {// 超出编码,需要升级return intsetUpgradeAndAdd(is,value);} else {// 通过二分在inset中查找当前元素,如果当前元素存在,就直接退出,保证元素唯一,不存在,pos记录大于当前元素的第一个值if (intsetSearch(is,value,&pos)) {if (success) *success = 0;return is;}// 数组扩容,扩容为length+1is = intsetResize(is,intrev32ifbe(is->length)+1);// 移动数组,将pos之后的元素往后移动一个位置if (pos < intrev32ifbe(is->length)) intsetMoveTail(is,pos,pos+1);}// 插入新元素_intsetSet(is,pos,value);// 重置元素长度is->length = intrev32ifbe(intrev32ifbe(is->length)+1);return is;
}
升级编码
static intset *intsetUpgradeAndAdd(intset *is, int64_t value) {// 拿到当前inset集合的编码uint8_t curenc = intrev32ifbe(is->encoding);// 插入元素的编码uint8_t newenc = _intsetValueEncoding(value);// inset集合的长度int length = intrev32ifbe(is->length);// 如果value小于0,那么应该插入到所有元素之前,大于0插入所有元素之后int prepend = value < 0 ? 1 : 0;// 修改inset集合的编码is->encoding = intrev32ifbe(newenc);// 数组扩容为length+1is = intsetResize(is,intrev32ifbe(is->length)+1);// 倒序拷贝元素,length+prepend就是要拷贝的位置,如果prepend为0表示新元素插入数组最后,为1表示插入数组第一个位置while(length--)_intsetSet(is,length+prepend,_intsetGetEncoded(is,length,curenc));// 插入新元素if (prepend)_intsetSet(is,0,value);else_intsetSet(is,intrev32ifbe(is->length),value);// 设置长度is->length = intrev32ifbe(intrev32ifbe(is->length)+1);return is;
}
1.3 Dict
Redis是一个键值型的数据库,我们可以根据键实现快速的增删改查。而键与值的映射关系是通过Dict来实现的。但是他内存不连续,一个指针8字节,浪费内存
Dict由三部分组成:
-
哈希表(DictHashTable)
typedef struct dictht {// entry数组,table是指向DictEntry数组的指针dictEntry **table;// 哈希表大小unsigned long size;// 哈希表大小的掩码,size-1,与key的hash值做与运算找到key在哈希表中的位置unsigned long sizemask;// entry个数,可能大于size,因为会出现hash冲突unsigned long used; } dictht;
-
哈希节点(DictEntry)
typedef struct dictEntry {void *key; // 键union {void *val;uint64_t u64;int64_t s64;double d;} v; // 值struct dictEntry *next; // 下一个Entry的指针 } dictEntry;
-
字典(Dict)
typedef struct dict {dictType *type; // dict类型,内置不同的hash函数void *privdata; // 私有数据,做特殊hash运算时使用dictht ht[2]; // 一个Dict包含两个hash表,其中一个存储当前数据,另一个一般为空,rehash时使用long rehashidx; // rehash进度,-1表示未进行int16_t pauserehash; // rehash是否暂停,1暂停,0继续 } dict;
当我们向Dict添加键值对时,Redis首先根据key计算出hash值(h),然后利用 h & sizemask
来计算元素应该存储到数组中的哪个索引位置。
我们存储k1=v1,假设k1的哈希值h =1,则1&3 =1,因此k1=v1要存储到数组角标1位置。
存储k2=v2,假设k2的哈希值h =1,则1&3 =1,因此k2=v2要存储到数组角标1位置,此时发生hash冲突,采用头插法将k2=v2这个entry插入链表头部
Dict结构
Dict的扩容
Dict中的HashTable就是数组结合单向链表的实现,当集合中元素较多时,必然导致哈希冲突增多,链表过长,则查询效率会大大降低。
Dict在每次新增键值对时都会检查负载因子(LoadFactor = used/size) ,满足以下两种情况时会触发哈希表扩容:
- 哈希表的 LoadFactor >= 1,并且服务器没有执行
BGSAVE
或者BGREWRITEAOF
等后台进程,因为这些进程需要大量的IO,可能导致进程阻塞 - 哈希表的 LoadFactor > 5 ;
int _dictExpand(dict *d, unsigned long size, int* malloc_failed)
{if (malloc_failed) *malloc_failed = 0;/* 如果正在做rehash或者当前hash表中entry数量大于size,报错 */if (dictIsRehashing(d) || d->ht[0].used > size)return DICT_ERR;// 新的hash表dictht n; /* the new hash table */// 找到大于等于size的第一个2^nunsigned long realsize = _dictNextPower(size);/* Detect overflows */if (realsize < size || realsize * sizeof(dictEntry*) < realsize)return DICT_ERR;/* 扩容大小和原大小一样,报错 */if (realsize == d->ht[0].size) return DICT_ERR;/* 重置hash表的大小和掩码 */n.size = realsize;n.sizemask = realsize-1;if (malloc_failed) {n.table = ztrycalloc(realsize*sizeof(dictEntry*));*malloc_failed = n.table == NULL;if (*malloc_failed)return DICT_ERR;} else // 分配内存n.table = zcalloc(realsize*sizeof(dictEntry*));// 已使用初始化为0n.used = 0;/* 如果是第一次,直接把n赋值给ht[0]即可 */if (d->ht[0].table == NULL) {d->ht[0] = n;return DICT_OK;}/* 否则,执行rehash */d->ht[1] = n;d->rehashidx = 0; // 表示rehash进度return DICT_OK;
}
Dict在删除元素的时候,删除成功后,也需要检查是否需要重置Dict的大小,如果size大于hash表初始大小同时负载因子小于0.1,那么就对hash表进行收缩
...
if (dictDelete((dict*)o->ptr, field) == C_OK) {deleted = 1;// 删除成功后,检查是否需要重置Dict大小,如果需要就调用dictResize方法重置if (htNeedsResize(o->ptr)) dictResize(o->ptr);
}
...// htNeedsResize方法
int htNeedsResize(dict *dict) {long long size, used;size = dictSlots(dict); // hash表大小used = dictSize(dict); // entry个数// size大于4并且 used*100/size < 10 就返回truereturn (size > DICT_HT_INITIAL_SIZE &&(used*100/size < HASHTABLE_MIN_FILL));
}// dictResize方法
int dictResize(dict *d)
{unsigned long minimal;// 正在做bgsave或者bgrewriteof或者rehash,就返回错误if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;// 获取entry数量minimal = d->ht[0].used;// 如果minimal小于4,则重置为4if (minimal < DICT_HT_INITIAL_SIZE)minimal = DICT_HT_INITIAL_SIZE;// 通过dictExpand重置hash表大小return dictExpand(d, minimal);
}
Dict的rehash
不管是扩容还是收缩,必定会创建新的哈希表,导致哈希表的
size
和sizemask
变化,而key的查询与sizemask
有关。因此必须对哈希表中的每一个key重新计算索引,插入新的哈希表,这个过程称为rehash
1、计算新hash表的realeSize,值取决于当前要做的是扩容还是收缩:
- 如果是扩容,则新size为第一个大于等于
dict.ht[0].used + 1
的2^n - 如果是收缩,则新size为第一个大于等于
dict.ht[0].used
的2^n
(不得小于4)
2、按照新的realeSize申请内存空间,创建dictht,并赋值给dict.ht[1]
3、设置dict.rehashidx = 0,标示开始rehash
4、将dict.ht[0]中的每一个dictEntry都rehash到dict.ht[1]
5、将dict.ht[1]赋值给dict.ht[0],给dict.ht[1]初始化为空哈希表,释放原来的dict.ht[0]的内存
6、将rehashidx赋值为-1,代表rehash结束
7、在rehash过程中,新增操作,则直接写入ht[1],查询、修改和删除则会在dict.ht[0]和dict.ht[1]依次查找并执行。这样可以确保ht[0]的数据只减不增,随着rehash最终为空
Dict的rehash不是一次性完成的,因为如果Dict中包含数百万个entry,要在一次rehash中完成,可能导致主线程阻塞。因此Dict的rehash是分多次、渐进式的完成的,称为渐进式rehash,在上边第4步reshah时,按如下流程:
1、每次执行增、删、改、查操作时,都检查一下dict.rehashidx
是否大于-1,如果是就将dict.ht[0].table[rehashidx]
的entry链表rehash到dict.ht[1],并将rehashidx++,直到dict.ht[0]中所有数据都rehash到dict.ht[1]
2、将dict.ht[1]赋值给dict.ht[0],给dict.ht[1]初始化为空哈希表,释放原来的dict.ht[0]的内存
3、将rehashidx赋值为-1,代表rehash结束
4、在rehash过程中,新增操作,则直接写入ht[1],查询、修改和删除则会在dict.ht[0]和dict.ht[1]依次查找并执行。这样可以确保ht[0]的数据只减不增,随着rehash最终为空
1.4 ZipList
ZipList 是一种特殊的 “双端链表” ,由一系列特殊编码的连续内存块组成。可以在任意一端进行压入/弹出操作, 并且该操作的时间复杂度为 O(1)。
-
zlbytes
固定4字节,记录整个压缩列表长度 -
zltail
固定4字节,记录压缩列表尾节点距离压缩列表的起始地址有多少字节 -
zllen
固定2字节,记录entry个数 -
zlend
固定1字节,内容为0xff
属性 | **类型 ** | **长度 ** | 用途 |
---|---|---|---|
zlbytes | uint32_t | 4 字节 | 记录整个压缩列表占用的内存字节数 |
zltail | uint32_t | 4 字节 | 记录压缩列表尾节点距离压缩列表的起始地址有多少字节,通过这个偏移量,可以确定表尾节点的地址。 |
zllen | uint16_t | 2 字节 | 记录了压缩列表包含的节点数量。 最大值为UINT16_MAX (65534),如果超过这个值,此处会记录为65535,但节点的真实数量需要遍历整个压缩列表才能计算得出。 |
entry | 列表节点 | 不定 | 压缩列表包含的各个节点,节点的长度由节点保存的内容决定。 |
zlend | uint8_t | 1 字节 | 特殊值 0xFF (十进制 255 ),用于标记压缩列表的末端。 |
ZipListEntry
ZipList 中的Entry并不像普通链表那样记录前后节点的指针,因为记录两个指针要占用16个字节,浪费内存。而是采用了下面的结构:
previous_entry_length
:前一节点的字节数,占1个或5个字节。- 如果前一节点的长度小于254字节,则采用1个字节来保存这个长度值
- 如果前一节点的长度大于等于254字节,则采用5个字节来保存这个长度值,第一个字节为0xfe【254】,后四个字节才是真实长度数据
encoding
:编码属性,记录content的数据类型(字符串还是整数)以及长度,占用1个、2个或5个字节contents
:负责保存节点的数据,可以是字符串或整数
previous_entry_length
和encoding
的长度可以确定,content
长度可以根据encoding
得出,因此这个entry的整体长度可以求出,知道当前这个entry的地址,就可以知道下一个entry的地址了,实现正序遍历。同时,知道当前这个entry的地址后,通过previous_entry_length
知道上一个entry的长度,可以知道 上一个entry的起始地址,从而实现倒序遍历。
ZipList中所有存储长度的数值均采用小端字节序,即低位字节在前,高位字节在后。
例如:数值0x1234,采用小端字节序后实际存储值为:0x3412
Encoding编码
ZipListEntry中的encoding编码分为字符串和整数两种:
- 字符串:如果encoding是以
00
、01
或者10
开头,则证明content是字符串
编码 | 编码长度 | 字符串大小 |
---|---|---|
|00pppppp| | 1 bytes | <= 63 bytes |
|01pppppp|qqqqqqqq| | 2 bytes | <= 16383 bytes |
|10000000|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| | 5 bytes | <= 4294967295 bytes |
例如,我们要保存字符串:“ab”和 “bc”
- 整数:如果encoding是以
11
开始,则证明content是整数,且encoding固定只占用1个字节。因为整数最大是long类型,8字节,所以encoding最大记录8,一字节就够用了,因为整数就这几种类型,所以可以根通过不同编码表示不同类型整数
编码 | 编码长度 | 整数类型 |
---|---|---|
11000000 | 1 | int16_t(2 bytes) |
11010000 | 1 | int32_t(4 bytes) |
11100000 | 1 | int64_t(8 bytes) |
11110000 | 1 | 24位有符整数(3 bytes) |
11111110 | 1 | 8位有符整数(1 bytes) |
1111xxxx | 1 | 直接在xxxx位置保存数值,范围从0001~1101,减1后结果为实际值 |
1111xxxx
编码:当content中存储数字太小的时候,可以直接存储在encoding的后四位上,这样可以节省一个字节,0000-1111,由于0000和1110已经被使用,所以范围就是0001-1101,是1到13,因为是从0开始存,所以0001-1101实际存储的范围为0-12
例如,我们要保存整数:2和5,因为2和5都是小于12,所以直接通过1111xxxx
的形式存储,2就存储为11110011
,5存储为11110110
,存储结构如下图:
1.5 ZipList的连锁更新问题
ZipList的每个Entry都通过
previous_entry_length
来记录上一个节点的大小,长度是1个或5个字节
如果前一节点的长度小于254字节,则采用1个字节来保存这个长度值
如果前一节点的长度大于等于254字节,则采用5个字节来保存这个长度值,第一个字节为0xfe,后四个字节才是真实长度数据
现在,假设我们有N个连续的、长度为250~253字节之间的entry,因此entry的previous_entry_length
属性用1个字节即可表示,如图所示
现在往头部插入了一个长度为254字节的entry,所以原来第一个entry的previous_entry_length
需要使用5个字节来存储,然后这个entry的整体大小变为254字节,从而导致他的下一个entry也需要使用4字节的previous_entry_length
来保存,后边都是如此,发生连锁更新问题。这样会导致每个entry都需要向后移动,如果内存不够,还会频繁申请内存,用户态和内核态频繁切换,导致性能下降,但是这种情况出现的概率很低
1.6 QuickList
1、ZipList虽然节省内存,但申请内存必须是连续空间,如果内存占用较多,申请内存效率很低。
- 为了缓解这个问题,我们必须限制ZipList的长度和entry大小。
2、我们要存储大量数据,超出了ZipList最佳的上限该怎么办
- 可以创建多个ZipList来分片存储数据。
3、数据拆分后比较分散,不方便管理和查找,这多个ZipList如何建立联系?
- Redis在3.2版本引入了新的数据结构QuickList,它是一个双端链表,只不过链表中的每个节点都是一个ZipList。
这样每个节点的ziplist内存连续,不同节点的内存是非连续的
为了避免QuickList中的每个ZipList中entry过多,Redis提供了一个配置项:list-max-ziplist-size
来限制。
-
如果值为正,则代表ZipList的允许的entry个数的最大值
-
如果值为负,则代表ZipList的最大内存大小,默认值为-2
-
-1:每个ZipList的内存占用不能超过4kb
-
-2:每个ZipList的内存占用不能超过8kb
-
-3:每个ZipList的内存占用不能超过16kb
-
-4:每个ZipList的内存占用不能超过32kb
-
-5:每个ZipList的内存占用不能超过64kb
-
quicklist源码
typedef struct quicklist {// 头结点指针quicklistNode *head;// 尾结点指针quicklistNode *tail;// 所有zipList的entry数量unsigned long count; /* total count of all entries in all ziplists */// ziplist总数量unsigned long len; /* number of quicklistNodes */// ziplist的entry上限,默认为-2int fill : QL_FILL_BITS; /* fill factor for individual nodes */// 首位不压缩的节点个数,默认为0,全都不压缩,大于0,就表示前后有几个节点不压缩,中间的压缩unsigned int compress : QL_COMP_BITS; /* depth of end nodes not to compress;0=off */unsigned int bookmark_count: QL_BM_BITS;quicklistBookmark bookmarks[];
} quicklist;
quicklistNode源码
typedef struct quicklistNode {// 前一个节点指针struct quicklistNode *prev;// 后一个节点指针struct quicklistNode *next;// 当前节点ziplist的指针unsigned char *zl;// 当前节点ziplist的大小unsigned int sz; /* ziplist size in bytes */// 当前节点的ziplist的entry个数unsigned int count : 16; /* count of items in ziplist */// 编码方式:1.ziplist 2.lzf压缩模式unsigned int encoding : 2; /* RAW==1 or LZF==2 */unsigned int container : 2; /* NONE==1 or ZIPLIST==2 */unsigned int recompress : 1; /* was this node previous compressed? */unsigned int attempted_compress : 1; /* node can't compress; too small */unsigned int extra : 10; /* more bits to steal for future usage */
} quicklistNode;
这里compress为1,表示前后1个entry不压缩,中间的entry都压缩
QuickList的特点
- 是一个节点为ZipList的双端链表
- 节点采用ZipList,解决了传统链表的内存占用问题
- 控制了ZipList大小,解决连续内存空间申请效率问题
- 中间节点可以压缩,进一步节省了内存
1.7 SkipList
skipList(跳表)首先是链表,但与传统链表相比有几点差异:
- 元素按照升序【每个元素是一个SDS字符串,是根据得分进行排序】排列存储
- 节点可能包含多个指针,指针跨度不同【这样就不用像普通链表一样,访问元素需要一个一个遍历,可以类似于二分的方式直接到中间】。
zskiplist
typedef struct zskiplist {// 头尾指针节点struct zskiplistNode *header, *tail;// 节点数量unsigned long length;// 最大索引层数,默认是1int level;
} zskiplist;
zskiplistNode
typedef struct zskiplistNode {sds ele; // 节点存储的值double score; // 节点分数,用于排序,查找struct zskiplistNode *backward; // 前一个节点指针struct zskiplistLevel {struct zskiplistNode *forward; // 下一个节点指针unsigned long span; // 索引跨度} level[]; // 多级索引数组
} zskiplistNode;
SkipList的特点:
- 跳跃表是一个双向链表,每个节点都包含score和ele值
- 节点按照score值排序,score值一样则按照ele字典排序
- 每个节点都可以包含多层指针,层数是1到32之间的随机数【通过算法选择最佳层数】
- 不同层指针到下一个节点的跨度不同,层级越高,跨度越大
- 增删改查效率与红黑树基本一致,实现却更简单
1.8 RedisObject
Redis中的任意数据类型的键和值都会被封装为一个RedisObject
,也叫做Redis对象
RedisObject的头信息占用了16字节,如果使用string类型,一个string类型的数据就有16字节的头信息。而如果使用list这些集合结构,那么就只会有一个16字节的头信息
-
从Redis的使用者的角度来看,⼀个Redis节点包含多个database(非cluster模式下默认是16个,cluster模式下只能是1个),而一个database维护了从key space到object space的映射关系。这个映射关系的key是固定的string类型,⽽value可以是多种数据类型,比如:
string
,list
,hash
,set
,sorted
-
从Redis内部实现的⾓度来看,database内的这个映射关系是用⼀个dict来维护的。dict的key固定用⼀种数据结构来表达就够了,这就是动态字符串sds。而value则比较复杂,为了在同⼀个dict内能够存储不同类型的value,这就需要⼀个通⽤的数据结构,这个通用的数据结构就是robj,全名是redisObject。
Redis的编码方式
Redis中会根据存储的数据类型不同,选择不同的编码方式,共包含11种不同类型:
编号 | 编码方式 | 说明 |
---|---|---|
0 | OBJ_ENCODING_RAW | raw编码动态字符串 |
1 | OBJ_ENCODING_INT | long类型的整数的字符串 |
2 | OBJ_ENCODING_HT | hash表(字典dict) |
3 | OBJ_ENCODING_ZIPMAP | 已废弃 |
4 | OBJ_ENCODING_LINKEDLIST | 双端链表 |
5 | OBJ_ENCODING_ZIPLIST | 压缩列表 |
6 | OBJ_ENCODING_INTSET | 整数集合 |
7 | OBJ_ENCODING_SKIPLIST | 跳表 |
8 | OBJ_ENCODING_EMBSTR | embstr的动态字符串 |
9 | OBJ_ENCODING_QUICKLIST | 快速列表 |
10 | OBJ_ENCODING_STREAM | Stream流 |
五种数据结构
Redis中会根据存储的数据类型不同,选择不同的编码方式。基本数据类型就是这5种,像bitMap
、Hyperloglog
都是基本string实现的,geo
是基于zset实现的
数据类型 | 编码方式 |
---|---|
OBJ_STRING | int、embstr、raw |
OBJ_LIST | LinkedList和ZipList(3.2以前)、QuickList(3.2以后) |
OBJ_SET | intset、HT |
OBJ_ZSET | ZipList、HT、SkipList |
OBJ_HASH | ZipList、HT |
2、五种数据类型
2.1 String
String是Redis中最常见的数据存储类型
-
其基本编码方式是
RAW
,基于简单动态字符串(SDS)实现,存储上限为512mb。申请内存时,需要申请两次,Object头一次,SDS字符串一次 -
如果存储的SDS长度小于等于44字节,则会采用
EMBSTR
编码,此时object head与SDS是一段连续空间。申请内存时只需要调用一次内存分配函数,效率更高。为什么是44字节?
1、因为现在字符串长度小于等于44字节,所以
len
和alloc
都占用1字节,flags
占用1字节,结束位占用1字节,加上字符串的44字节,一共是48字节。48字节加上Object头的16字节,刚好是64字节。2、Redis底层内存分配算法使用的是
jemalloc
,分配内存时会以2^n
进行分配,64恰好是一个分片大小,不会产生内存碎片,因此申请一次内存就可以存储Object头和字符串的内容了 -
如果存储的字符串是整数值,并且大小在LONG_MAX范围内,则会采用INT编码:直接将数据保存在RedisObject的ptr指针位置(刚好8字节),不再需要SDS了。
1、String在Redis中是⽤⼀个robj来表示的。用来表示String的robj可能编码成3种内部表⽰:
OBJ_ENCODING_RAW
,OBJ_ENCODING_EMBSTR
,OBJ_ENCODING_INT
2、其中前两种编码使⽤的是
sds
来存储,最后⼀种OBJ_ENCODING_INT
编码直接把string存成了long型。3、在对string进行
incr
,decr
等操作的时候,如果它内部是OBJ_ENCODING_INT
编码,那么可以直接行加减操作;如果它内部是OBJ_ENCODING_RAW
或OBJ_ENCODING_EMBSTR
编码,那么Redis会先试图把sds存储的字符串转成long型,如果能转成功,再进行加减操作。4、对⼀个内部表示成long型的string执行
append
,setbit
,getrange
这些命令,针对的仍然是string的值(即⼗进制表示的字符串),而不是针对内部表⽰的long型进⾏操作。比如字符串”32”,如果按照字符数组来解释,它包含两个字符,它们的ASCII码分别是0x33和0x32。当我们执行命令setbit key 7 0
的时候,相当于把字符0x33变成了0x32,这样字符串的值就变成了”22”。⽽如果将字符串”32”按照内部的64位long型来解释,那么它是0x0000000000000020,在这个基础上执⾏setbit位操作,结果就完全不对了。因此,在这些命令的实现中,会把long型先转成字符串再进行相应的操作。
2.2 List
Redis的List类型可以从首、尾操作列表中的元素
LinkedList
:普通链表,可以从双端访问,内存占用较高【指针占用内存】,内存碎片较多ZipList
:压缩列表,可以从双端访问,内存占用低,存储上限低QuickList
:LinkedList + ZipList
,可以从双端访问,内存占用较低,包含多个ZipList,存储上限高
在3.2版本之前,Redis采用ZipList和LinkedList来实现List,当元素数量小于512并且元素大小小于64字节时采用ZipList编码,超过则采用LinkedList编码。
在3.2版本之后,Redis统一采用QuickList来实现List
源码分析
执行lpush
或者rpush
命令后,都是执行pushGenericCommand
命令,只不过插入位置不同
void lpushCommand(client *c) {pushGenericCommand(c,LIST_HEAD,0);
}void rpushCommand(client *c) {pushGenericCommand(c,LIST_TAIL,0);
}
pushGenericCommand
函数
/*xx为true表示只有当前这个list存在,才会push,否则不会push,xx为false,插入时list不存在会自动创建redis的客户端和服务端建立连接后都会被封装为一个client对象,包含客户端的各种信息,包括客户端要执行的命令
*/
void pushGenericCommand(client *c, int where, int xx) {int j;// lpush key v1 v2 v3// j=2,就是从v1开始,遍历插入的元素,判断元素大小是否超过LIST_MAX_ITEM_SIZE(1<<32 -1024)for (j = 2; j < c->argc; j++) {if (sdslen(c->argv[j]->ptr) > LIST_MAX_ITEM_SIZE) {addReplyError(c, "Element too large");return;}}// 找到key对应的list,c->db表示客户端使用的是哪个数据库,c->argv[1]就是key,根据key找value,value就是List,封装为robjrobj *lobj = lookupKeyWrite(c->db, c->argv[1]);// 检查类型是否正确if (checkType(c,lobj,OBJ_LIST)) return;// 检测是否为空if (!lobj) {// 如果list为空,同时xx为true就不能插入if (xx) {addReply(c, shared.czero);return;}// 否则创建Quicklistlobj = createQuicklistObject();/*对Quicklist做一些限制server.list_max_ziplist_size表示每个ziplist的大小,默认-2,即8kbserver.list_compress_depth表示头尾不压缩的个数,默认为0,不压缩*/ quicklistSetOptions(lobj->ptr, server.list_max_ziplist_size,server.list_compress_depth);// 将key对应的value设置为创建的QuicklistdbAdd(c->db,c->argv[1],lobj);}// 将所有的value插入Quicklistfor (j = 2; j < c->argc; j++) {listTypePush(lobj,c->argv[j],where);server.dirty++;}addReplyLongLong(c, listTypeLength(lobj));char *event = (where == LIST_HEAD) ? "lpush" : "rpush";signalModifiedKey(c,c->db,c->argv[1]);notifyKeyspaceEvent(NOTIFY_LIST,event,c->argv[1],c->db->id);
}robj *createQuicklistObject(void) {// 申请内存并初始化quicklistquicklist *l = quicklistCreate();// 创建RedisObject,type为OBJ_LIST,ptr指向quicklistrobj *o = createObject(OBJ_LIST,l);// 设置编码为QUICKLISTo->encoding = OBJ_ENCODING_QUICKLIST;return o;
}int checkType(client *c, robj *o, int type) {/* A NULL is considered an empty key */if (o && o->type != type) {addReplyErrorObject(c,shared.wrongtypeerr);return 1;}return 0;
}
2.3 Set
Set是Redis中的单列集合
- 不保证有序性
- 保证元素唯一
- 求交集、并集、差集
Set集合在添加元素时需要判断元素是否存在,对查询元素的效率要求非常高,因此使用Dict
结构。
- Dict中的key用来存储元素,value统一为null。
- 当存储的所有数据都是整数,并且元素数量不超过
set-max-intset-entries
【默认512,可以在服务端设置】时,Set会采用IntSet
编码,以节省内存
源码分析
1、创建Set集合
robj *setTypeCreate(sds value) {// 判断添加元素的类型,如果是long,就创建INTSETif (isSdsRepresentableAsLongLong(value,NULL) == C_OK)return createIntsetObject();// 否则创建Setreturn createSetObject();
}// 创建INTSET
robj *createIntsetObject(void) {intset *is = intsetNew();robj *o = createObject(OBJ_SET,is);o->encoding = OBJ_ENCODING_INTSET;return o;
}//创建Set
robj *createSetObject(void) {dict *d = dictCreate(&setDictType,NULL);robj *o = createObject(OBJ_SET,d);o->encoding = OBJ_ENCODING_HT;return o;
}
2、添加元素
- 如果当前是HT类型,那么元素直接添加进去
- 如果当前是
INTSET
- 当前元素为long类型,直接添加进去,如果元素数量超过
set_max_intset_entries
【默认512】,就转为HT类型 - 否则,将
INTSET
转为HT
结构,然后添加元素
- 当前元素为long类型,直接添加进去,如果元素数量超过
int setTypeAdd(robj *subject, sds value) {long long llval;if (subject->encoding == OBJ_ENCODING_HT) { // 已经是HT结构,直接添加元素dict *ht = subject->ptr;dictEntry *de = dictAddRaw(ht,value,NULL);if (de) {dictSetKey(ht,de,sdsdup(value));dictSetVal(ht,de,NULL);return 1;}} else if (subject->encoding == OBJ_ENCODING_INTSET) { // INTSET结构// 判断value是否是longif (isSdsRepresentableAsLongLong(value,&llval) == C_OK) {uint8_t success = 0;// 是整数,直接添加元素到setsubject->ptr = intsetAdd(subject->ptr,llval,&success);if (success) {/* Convert to regular set when the intset contains* too many entries. */// 当元素数量超出set_max_intset_entries,转为HTsize_t max_entries = server.set_max_intset_entries;/* limit to 1G entries due to intset internals. */if (max_entries >= 1<<30) max_entries = 1<<30;if (intsetLen(subject->ptr) > max_entries)setTypeConvert(subject,OBJ_ENCODING_HT);return 1;}// vlaue不是long类型,将INSET结构转为HT结构} else {/* Failed to get integer from object, convert to regular set. */setTypeConvert(subject,OBJ_ENCODING_HT);/* The set *was* an intset and this value is not integer* encodable, so dictAdd should always work. */serverAssert(dictAdd(subject->ptr,sdsdup(value),NULL) == DICT_OK);return 1;}} else {serverPanic("Unknown set encoding");}return 0;
}// 添加元素,key就是插入的元素
dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing)
{long index;dictEntry *entry;dictht *ht;if (dictIsRehashing(d)) _dictRehashStep(d);/* Get the index of the new element, or -1 if* the element already exists. */// 找到key应该插入的位置,如果key已经存在,就返回-1退出if ((index = _dictKeyIndex(d, key, dictHashKey(d,key), existing)) == -1)return NULL;// 如果正在rehash,就添加到ht[1],否则添加到ht[0]ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];// 创建entryentry = zmalloc(sizeof(*entry));// 头插法entry->next = ht->table[index];ht->table[index] = entry;ht->used++;/* Set the hash entry fields. */dictSetKey(d, entry, key);return entry;
}
初始为
INTSET
,执行sadd s1 m1
后,将INTSET
转为HT
2.4 ZSET
ZSet也就是SortedSet,其中每一个元素都需要指定一个score值和member值
- 可以根据score值排序
- member必须唯一
- 可以根据member查询分数
因此,ZSET底层数据结构必须满足键值存储、键唯一、可排序这几个需求。
SkipList
:可以排序,并且可以同时存储score和ele值(member)HT(Dict)
:可以键值存储,并且可以根据key找value
所以ZSET底层采用的是SkipList
和Dict
结合的方式实现,不过缺点是内存占用大,一份数据存了两次,属于空间换时间
当元素数量不多时,HT和SkipList的优势不明显,而且更耗内存。因此zset还会采用ZipList结构来节省内存,不过需要同时满足两个条件:
- 元素数量小于
zset_max_ziplist_entries
,默认值128 - 每个元素都小于
zset_max_ziplist_value
字节,默认值64
ziplist本身没有排序功能,而且没有键值对的概念,因此需要由zset通过编码实现:
- ZipList是连续内存,因此score和element是紧挨在一起的两个entry, element在前,score在后
- score越小越接近队首,score越大越接近队尾,按照score值升序排列
源码分析
1、zset结构
typedef struct zset {dict *dict;zskiplist *zsl;
} zset;
2、创建zset
- 通过key找value,如果value不存在
- 如果
zset_max_ziplist_entries
为0或者zset_max_ziplist_value
小于添加元素的大小,就创建zset
- 否则创建
ziplist
- 如果
void zaddGenericCommand(client *c, int flags) {...robj *key = c->argv[1];robj *zobj;// zadd添加元素时,先根据key找到zsetzobj = lookupKeyWrite(c->db,key);if (checkType(c,zobj,OBJ_ZSET)) goto cleanup;// 如果zset不存在,就创建if (zobj == NULL) {if (xx) goto reply_to_client; /* No key + XX option: nothing to do. */// 如果zset_max_ziplist_entries为0,表示不会创建ziplist,如果当前添加元素的大小大于zset_max_ziplist_value,那么就创建zsetif (server.zset_max_ziplist_entries == 0 ||server.zset_max_ziplist_value < sdslen(c->argv[scoreidx+1]->ptr)){zobj = createZsetObject();} else { // 否则创建ziplistzobj = createZsetZiplistObject();}dbAdd(c->db,key,zobj);}...
}// 创建zset
robj *createZsetObject(void) {zset *zs = zmalloc(sizeof(*zs));robj *o;zs->dict = dictCreate(&zsetDictType,NULL);zs->zsl = zslCreate();o = createObject(OBJ_ZSET,zs);o->encoding = OBJ_ENCODING_SKIPLIST;return o;
}// 创建ziplist
robj *createZsetZiplistObject(void) {unsigned char *zl = ziplistNew();robj *o = createObject(OBJ_ZSET,zl);o->encoding = OBJ_ENCODING_ZIPLIST;return o;
}
3、添加元素
int zsetAdd(robj *zobj, double score, sds ele, int in_flags, int *out_flags, double *newscore) {// 如果当前是ZIPLIST类型if (zobj->encoding == OBJ_ENCODING_ZIPLIST) {unsigned char *eptr;// 判断当前元素是否存在,如果存在,直接更新score值即可if ((eptr = zzlFind(zobj->ptr,ele,&curscore)) != NULL) {/* NX? Return, same element already exists. */if (nx) {*out_flags |= ZADD_OUT_NOP;return 1;}/* Prepare the score for the increment if needed. */if (incr) {score += curscore;if (isnan(score)) {*out_flags |= ZADD_OUT_NAN;return 0;}}/* GT/LT? Only update if score is greater/less than current. */if ((lt && score >= curscore) || (gt && score <= curscore)) {*out_flags |= ZADD_OUT_NOP;return 1;}if (newscore) *newscore = score;/* Remove and re-insert when score changed. */if (score != curscore) {zobj->ptr = zzlDelete(zobj->ptr,eptr);zobj->ptr = zzlInsert(zobj->ptr,ele,score);*out_flags |= ZADD_OUT_UPDATED;}return 1;// 当前元素不存在} else if (!xx) {// 添加元素后,元素数量如果大于server.zset_max_ziplist_entries 或者 当前元素大小大于 server.zset_max_ziplist_value// 或者元素总大小超过阈值,就将ziplist转为Dict+Skiplist的结构if (zzlLength(zobj->ptr)+1 > server.zset_max_ziplist_entries ||sdslen(ele) > server.zset_max_ziplist_value ||!ziplistSafeToAdd(zobj->ptr, sdslen(ele))){zsetConvert(zobj,OBJ_ENCODING_SKIPLIST);} else { // 否则添加元素zobj->ptr = zzlInsert(zobj->ptr,ele,score);if (newscore) *newscore = score;*out_flags |= ZADD_OUT_ADDED;return 1;}} else {*out_flags |= ZADD_OUT_NOP;return 1;}}// 当前编码为SKIPLIST,无需转换if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {zset *zs = zobj->ptr;zskiplistNode *znode;dictEntry *de;de = dictFind(zs->dict,ele);if (de != NULL) {/* NX? Return, same element already exists. */if (nx) {*out_flags |= ZADD_OUT_NOP;return 1;}curscore = *(double*)dictGetVal(de);/* Prepare the score for the increment if needed. */if (incr) {score += curscore;if (isnan(score)) {*out_flags |= ZADD_OUT_NAN;return 0;}}/* GT/LT? Only update if score is greater/less than current. */if ((lt && score >= curscore) || (gt && score <= curscore)) {*out_flags |= ZADD_OUT_NOP;return 1;}if (newscore) *newscore = score;/* Remove and re-insert when score changes. */if (score != curscore) {znode = zslUpdateScore(zs->zsl,curscore,ele,score);/* Note that we did not removed the original element from* the hash table representing the sorted set, so we just* update the score. */dictGetVal(de) = &znode->score; /* Update score ptr. */*out_flags |= ZADD_OUT_UPDATED;}return 1;} else if (!xx) {ele = sdsdup(ele);znode = zslInsert(zs->zsl,score,ele);serverAssert(dictAdd(zs->dict,ele,&znode->score) == DICT_OK);*out_flags |= ZADD_OUT_ADDED;if (newscore) *newscore = score;return 1;} else {*out_flags |= ZADD_OUT_NOP;return 1;}} else {serverPanic("Unknown sorted set encoding");}return 0; /* Never reached. */
}
2.5 Hash
Hash结构与Redis中的Zset非常类似
- 都是键值存储
- 都需求根据键获取值
- 键必须唯一
区别如下
- zset的键是member,值是score;hash的键和值都是任意值
- zset要根据score排序;hash则无需排序
由于hash结构不需要排序,默认采用ZipList编码,用以节省内存。 ZipList中相邻的两个entry 分别保存field和value
- 当Hash中数据满足以下条件,使用ziplist进⾏存储数据,否则使用Dict
- 元素数量小于
hash-max-ziplist-entries
,默认值512 - 每个元素都小于
hash-max-ziplist-value
字节,默认值64
- 元素数量小于
Redis的hash之所以这样设计,是因为当ziplist变得很⼤的时候,它有如下几个缺点:
- 每次插⼊或修改引发的realloc操作会有更⼤的概率造成内存拷贝,从而降低性能。
- ⼀旦发生内存拷贝,内存拷贝的成本也相应增加,因为要拷贝更⼤的⼀块数据。
- 当ziplist数据项过多的时候,在它上⾯查找指定的数据项就会性能变得很低,因为ziplist上的查找需要进行遍历。
总之,ziplist本来就设计为各个数据项挨在⼀起组成连续的内存空间,这种结构并不擅长做修改操作。⼀旦数据发⽣改动,就会引发内存realloc,可能导致内存拷贝。
源码分析
void hsetCommand(client *c) {int i, created = 0;robj *o;if ((c->argc % 2) == 1) {addReplyErrorFormat(c,"wrong number of arguments for '%s' command",c->cmd->name);return;}// hset user name xrj age 20,argv[1]就是user,通过key判断hash结构是否存在,不存在就创建一个新的,默认采用ZipList编码if ((o = hashTypeLookupWriteOrCreate(c,c->argv[1])) == NULL) return;// 判断是否需要把ziplist转为DicthashTypeTryConversion(o,c->argv,2,c->argc-1);// 遍历每一对field和value,执行hset命令for (i = 2; i < c->argc; i += 2)created += !hashTypeSet(o,c->argv[i]->ptr,c->argv[i+1]->ptr,HASH_SET_COPY);/* HMSET (deprecated) and HSET return value is different. */char *cmdname = c->argv[0]->ptr;if (cmdname[1] == 's' || cmdname[1] == 'S') {/* HSET */addReplyLongLong(c, created);} else {/* HMSET */addReply(c, shared.ok);}signalModifiedKey(c,c->db,c->argv[1]);notifyKeyspaceEvent(NOTIFY_HASH,"hset",c->argv[1],c->db->id);server.dirty += (c->argc - 2)/2;
}robj *hashTypeLookupWriteOrCreate(client *c, robj *key) {// 通过key查找robjrobj *o = lookupKeyWrite(c->db,key);if (checkType(c,o,OBJ_HASH)) return NULL;// 不存在就创建if (o == NULL) {o = createHashObject();dbAdd(c->db,key,o);}return o;
}
robj *createHashObject(void) {// 默认采用ziplist编码unsigned char *zl = ziplistNew();robj *o = createObject(OBJ_HASH, zl);o->encoding = OBJ_ENCODING_ZIPLIST;return o;
}void hashTypeTryConversion(robj *o, robj **argv, int start, int end) {int i;size_t sum = 0;// 本身就不是ziplist编码,直接退出if (o->encoding != OBJ_ENCODING_ZIPLIST) return;// 遍历插入的field和valuefor (i = start; i <= end; i++) {// 如果不是sds类型,跳过if (!sdsEncodedObject(argv[i]))continue;size_t len = sdslen(argv[i]->ptr);// 如果field或者value的长度大于hash_max_ziplist_value,就转为HTif (len > server.hash_max_ziplist_value) {hashTypeConvert(o, OBJ_ENCODING_HT);return;}sum += len;}// 如果总大小大于1G,也转为HTif (!ziplistSafeToAdd(o->ptr, sum))hashTypeConvert(o, OBJ_ENCODING_HT);
}
int hashTypeSet(robj *o, sds field, sds value, int flags) {int update = 0;// 当前编码为ziplistif (o->encoding == OBJ_ENCODING_ZIPLIST) {unsigned char *zl, *fptr, *vptr;zl = o->ptr;// 查询head指针fptr = ziplistIndex(zl, ZIPLIST_HEAD);if (fptr != NULL) { // head不为空,说明ziplist不为空,查找keyfptr = ziplistFind(zl, fptr, (unsigned char*)field, sdslen(field), 1);if (fptr != NULL) { // 如果key存在,就更新value/* Grab pointer to the value (fptr points to the field) */vptr = ziplistNext(zl, fptr);serverAssert(vptr != NULL);update = 1;/* Replace value */zl = ziplistReplace(zl, vptr, (unsigned char*)value,sdslen(value));}}// 如果key不存在,就添加进入if (!update) {/* Push new field/value pair onto the tail of the ziplist */zl = ziplistPush(zl, (unsigned char*)field, sdslen(field),ZIPLIST_TAIL);zl = ziplistPush(zl, (unsigned char*)value, sdslen(value),ZIPLIST_TAIL);}o->ptr = zl;/* 插入新元素,检查长度是否超出,超出就转为HT结构 */if (hashTypeLength(o) > server.hash_max_ziplist_entries)hashTypeConvert(o, OBJ_ENCODING_HT);// 当前编码为HT,直接插入即可} else if (o->encoding == OBJ_ENCODING_HT) {dictEntry *de = dictFind(o->ptr,field);if (de) {sdsfree(dictGetVal(de));if (flags & HASH_SET_TAKE_VALUE) {dictGetVal(de) = value;value = NULL;} else {dictGetVal(de) = sdsdup(value);}update = 1;} else {sds f,v;if (flags & HASH_SET_TAKE_FIELD) {f = field;field = NULL;} else {f = sdsdup(field);}if (flags & HASH_SET_TAKE_VALUE) {v = value;value = NULL;} else {v = sdsdup(value);}dictAdd(o->ptr,f,v);}} else {serverPanic("Unknown hash encoding");}/* Free SDS strings we did not referenced elsewhere if the flags* want this function to be responsible. */if (flags & HASH_SET_TAKE_FIELD && field) sdsfree(field);if (flags & HASH_SET_TAKE_VALUE && value) sdsfree(value);return update;
}