自然语言处理基础【1】词嵌入

词嵌入(Word Embedding)

词嵌入(Word Embedding)是一种自然语言处理技术,用于将词语或短语转换为实数向量,以便机器能够理解和处理语言。它通过捕捉词语之间的语义和语法关系,能够在高维空间中表示这些关系。以下是词嵌入的原理详解:

1. 基本概念

词嵌入是将词语映射到一个连续的向量空间中,使得相似意义的词在向量空间中的距离较近。传统的词表示方法是独热编码(one-hot encoding),但这种方法有高维度、稀疏性等问题,不适合捕捉词语之间的语义关系。词嵌入通过低维度的密集向量表示词语,克服了这些缺点。

2. 词嵌入的模型

2.1 Word2Vec

Word2Vec 是最早且最著名的词嵌入模型之一。它有两种训练方法:Skip-gram 和 CBOW(Continuous Bag of Words)。

  • Skip-gram:通过预测目标词的上下文词来训练模型。目标是通过给定一个词,预测其周围的词。例如,句子“我喜欢机器学习”,模型会通过“喜欢”预测“我”和“机器学习”。
  • CBOW:通过上下文词来预测目标词。例如,通过“我”和“机器学习”预测“喜欢”。

Word2Vec 的训练过程使用了神经网络,通过大量的文本数据进行训练,使得词语的向量表示能够捕捉其语义和上下文信息。

2.2 GloVe

GloVe(Global Vectors for Word Representation)是一种基于词共现矩阵的词嵌入方法。它通过统计词语在大规模语料库中的共现次数,构建词共现矩阵,然后通过矩阵分解技术得到词语的向量表示。GloVe 强调全局统计信息,而不仅仅是局部上下文。

2.3 FastText

FastText 是 Facebook 提出的词嵌入模型,它扩展了 Word2Vec,通过将词语分解为字符 n-gram 来训练模型。这种方法能够更好地处理未登录词(即训练集中未出现过的词)和形态学丰富的语言。

3. 训练过程

以 Word2Vec 的 Skip-gram 模型为例,其训练过程如下:

  1. 准备数据:将大规模的文本语料库进行预处理,去除停用词、标点符号等。
  2. 建立词表:统计词频,建立词汇表,并为每个词分配一个唯一的索引。
  3. 构建训练样本:对于每个词,构建其上下文词的训练样本。
  4. 训练模型:使用神经网络(通常是一个浅层的前馈神经网络)进行训练,优化目标函数(如最大化上下文词的似然)。
  5. 输出词向量:训练完成后,输出每个词的向量表示。

4. 优点和应用

优点

  • 能够捕捉词语之间的语义关系。
  • 低维度、密集向量表示,节省内存和计算资源。
  • 可用于下游任务,如文本分类、情感分析、机器翻译等。

应用

  • 相似词查找:找到与给定词语语义相似的词。
  • 文本分类:通过将文本转换为词向量,进行分类任务。
  • 情感分析:通过分析词向量,判断文本的情感倾向。
  • 机器翻译:通过词嵌入表示,提升翻译模型的性能。

5. 总结

词嵌入是自然语言处理中的核心技术,通过将词语表示为低维向量,能够有效捕捉语义信息,广泛应用于各种 NLP 任务。Word2Vec、GloVe 和 FastText 是三种常见的词嵌入模型,各有优缺点,适用于不同的应用场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/47639.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

企业微信PC版应用跳转到默认浏览器,避坑指南,欢迎补充(Vue项目版)。。。

引子 关于企业微信PC版应用跳转到默认浏览器,我之前写过一篇文章:企业微信PC版应用跳转到默认浏览器,避坑指南,欢迎补充。。。 以前的文章里用的前后端一体的Jsp项目,这次我使用的是前后端分离的Vue项目,…

使用Event Sourcing模式管理应用状态

在现代软件开发中,应用状态的管理是一个复杂且关键的问题。传统的CRUD(创建、读取、更新、删除)模型在处理复杂业务逻辑时可能会遇到瓶颈。Event Sourcing(事件溯源)模式提供了一种新的方法,通过记录所有状…

C语言 通讯录管理 完整代码

这份代码,是我从网上找的。目前是能运行。我正在读。有些不懂的地方,等下再记录下来。 有些地方的命名,还需要重新写一下。 比如: PersonInfo* info &address_book->all_address[address_book->size]; 应该改为: Perso…

使用SpringCloud搭建分布式配置中心

在现代的分布式系统中,配置管理是一个非常重要的组成部分。传统的做法是将配置文件放在每个服务的本地进行配置,这样的做法在规模较小的系统中还能够接受,但是当系统规模逐渐扩大时,配置管理将变得非常困难,容易出错。…

QT--文件操作和文件读写

文件操作和文件读写 QFile 类用于对文件进行操作,它继承自 QIODevice,可以进行读写操作。主要用于打开、关闭、读取、写入和管理文件。 1. 首先要指定文件路径 QFile fn(“文件路径”);也可以通过文件对话框来选择文件getOpenFileName 函数原型 QStr…

怎么降低美国服务器硬盘故障率?

要降低硬盘故障率,首先需要了解其产生的原因,常见的美国服务器硬盘故障原因包括温度过高、振动过大、电流不稳定、质量问题等。对于美国服务器而言,由于其运行环境可能存在差异,如温湿度变化大、电力供应不稳定等,这些…

部署Mojo模型:生产环境中的智能自动化

部署Mojo模型:生产环境中的智能自动化 在机器学习项目的生命周期中,模型的部署是一个至关重要的环节。Mojo模型,作为H2O.ai提供的一种模型导出格式,允许开发者将训练好的模型轻松部署到生产环境中。本文将详细介绍如何在生产环境…

【大数据面试题】37 Doris 是怎么保证性能的?

一步一个脚印,一天一道大数据面试题 博主希望能够得到大家的点赞收藏支持!非常感谢 点赞,收藏是情分,不点是本分。祝你身体健康,事事顺心! Doris 是当下大热的 MPP 数据库,下面来聊聊它如何保证…

AGI 之 【Hugging Face】 的【零样本和少样本学习】之一 [构建标记任务] / [ 基线模型 ] 的简单整理

AGI 之 【Hugging Face】 的【零样本和少样本学习】之一 [构建标记任务] / [ 基线模型 ] 的简单整理 目录 AGI 之 【Hugging Face】 的【零样本和少样本学习】之一 [构建标记任务] / [ 基线模型 ] 的简单整理 一、简单介绍 二、零样本学习 (Zero-shot Learning) 和少样本学习…

字符大全(架构师都不知道的秘密)

序号Shell特殊字符具体解释具体示例注解1$变量替换echo $UID输出当前用户的UID2&后台运行ls &将ls命令放入后台执行3;命令分隔符echo Hello; echo World依次执行多个命令4|管道ls | grep filename将ls命令的输出作为grep命令的输入5>输出重定向echo Hello > file…

【博主推荐】HTML5实现简洁的实用的个人网站、个人主页七个页面源码

文章目录 1.设计来源1.1 个人主页界面1.2 关于我界面1.3 我的技能界面1.4 我的经验界面1.5 我的教育界面1.6 我的项目界面1.7 联系我界面 2.效果和源码2.1 动态效果2.2 源代码 源码下载万套模板,程序开发,在线开发,在线沟通 作者:…

ipsec协议簇(详解)

IPSEC协议簇 IPSEC协议簇 --- 基于网络层的,应用密码学的安全通信协议组 IPV6中,IPSEC是要求强制使用的,但是,IPV4中作为可选项使用 IPSEC可以提供的安全服务 机密性 --- 数据加密 完整性 --- 防篡改可用性 数据源鉴别 -- 身份…

长效代理IP如何选用及代理服务分析

在这个数据为王、信息瞬息万变的时代,长效代理IP成为了众多开发者、数据科学家乃至普通网民手中的一把利器。它不仅能帮助我们解决地域管理,还能在保护隐私的同时,确保数据传输的稳定与安全。但面对市面上琳琅满目的代理服务,如何…

IVI(In-Vehicle Infotainment,智能座舱的信息娱乐系统)

IVI能够实现包括三维导航、实时路况、辅助驾驶等在线娱乐功能。 IVI人机交互形式(三板斧):声音、图像、文字 IVI人机交互媒介I(四件套):中控屏幕(显示、触控)、仪表显示、语言、方…

目标检测 | YOLO v1、YOLO v2、YOLO v3与YOLO v3 SPP理论讲解

☀️教程:霹雳吧啦Wz ☀️链接:https://www.bilibili.com/video/BV1yi4y1g7ro?p1&vd_sourcec7e390079ff3e10b79e23fb333bea49d 一、YOLO v1 针对于two-stage目标检测算法普遍存在的运算速度慢的缺点,YOLO创造性的提出了one-stage目标检测…

2024-07-20 Unity插件 Odin Serializer2 —— 序列化教程

文章目录 1 由根对象决定序列化2 实现 Odin 序列化器2.1 继承已有序列化类2.2 自定义序列化类 3 避免 Unity 无限深度警告4 指定序列化秘钥4.1 External String Reference Resolver4.2 External GUID Reference Resolver4.3 External Index Reference Resolver 4 功能与限制4.1…

从零开始实现大语言模型(七):多头注意力机制

1. 前言 前文所述神经网络模块CausalAttention也被称为单头注意力模块(single-head attention)。将向量序列 x 1 , x 2 , ⋯   , x n x_1, x_2, \cdots, x_n x

为什么我不建议用Excel做进销存系统?

进销存管理系统是一个企业中非常关键的部分,它涉及商品的采购、销售和库存管理等复杂流程。虽然EXCEL作为一个办公软件,它的通用性和灵活性使其能够处理这类数据,但实际上,使用它来构建专业的进销存管理系统存在一些明显的局限性。…

haproxy服务介绍

haproxy 搭建使用开启HAProxy的界面UI配置负载均衡配置web代理 HAProxy(High Availability Proxy)是一个高性能的TCP/HTTP负载均衡器和代理服务器,广泛用于提升Web应用的可用性和性能。[官网说明](https://docs.haproxy.org/2.8/intro.html#3…

NLP: 词袋模型和TFIDF模型

文章目录 词袋模型TF-IDF模型词汇表模型 词袋模型 文本特征提取有两个非常重要的模型: 词集模型:单词构成的集合,集合自然每个元素都只有一个,也即词集中的每个单词都只有一个。 词袋模型:在词集的基础上如果一个单词…