Python酷库之旅-第三方库Pandas(035)

目录

一、用法精讲

106、pandas.Series.iloc方法

106-1、语法

106-2、参数

106-3、功能

106-4、返回值

106-5、说明

106-6、用法

106-6-1、数据准备

106-6-2、代码示例

106-6-3、结果输出

107、pandas.Series.__iter__魔法方法

107-1、语法

107-2、参数

107-3、功能

107-4、返回值

107-5、说明

107-6、用法

107-6-1、数据准备

107-6-2、代码示例

107-6-3、结果输出

108、pandas.Series.items方法

108-1、语法

108-2、参数

108-3、功能

108-4、返回值

108-5、说明

108-6、用法

108-6-1、数据准备

108-6-2、代码示例

108-6-3、结果输出

109、pandas.Series.keys方法

109-1、语法

109-2、参数

109-3、功能

109-4、返回值

109-5、说明

109-6、用法

109-6-1、数据准备

109-6-2、代码示例

109-6-3、结果输出

110、pandas.Series.pop方法

110-1、语法

110-2、参数

110-3、功能

110-4、返回值

110-5、说明

110-6、用法

110-6-1、数据准备

110-6-2、代码示例

110-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

106、pandas.Series.iloc方法
106-1、语法
# 106、pandas.Series.iloc方法
pandas.Series.iloc
Purely integer-location based indexing for selection by position.Deprecated since version 2.2.0: Returning a tuple from a callable is deprecated..iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array.Allowed inputs are:An integer, e.g. 5.A list or array of integers, e.g. [4, 3, 0].A slice object with ints, e.g. 1:7.A boolean array.A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don’t have a reference to the calling object, but would like to base your selection on some value.A tuple of row and column indexes. The tuple elements consist of one of the above inputs, e.g. (0, 1)..iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics).See more at Selection by Position.
106-2、参数

        无

106-3、功能

        用于基于整数位置选择数据的索引器,它允许你通过行的整数位置来选择数据, 主要用于选择特定位置上的元素、切片或者行列组合,该方法在数据处理和分析中非常有用,特别是在你不关心具体标签而只关心位置时。

106-4、返回值

        返回值类型取决于你选择的数据的类型和数量,下面详细说明几种常见的返回值类型:

106-4-1、单个元素:如果你通过iloc选择了单个元素(例如s.iloc[2]),返回值将是该元素的具体值,这可以是整数、浮点数、字符串等,具体取决于Series中的元素类型。

106-4-2、多个元素:如果你选择了多个元素(例如s.iloc[1,3]),返回值将是一个pandas.Series对象,包含所选位置的元素,索引仍然是原始的索引值。

106-4-3、切片:如果你使用了切片(例如s.iloc[1:3]),返回值将是一个pandas.Series对象,包含所选范围内的所有元素,切片返回的Series保留了原始的索引。

106-4-4、行和列的组合:如果在DataFrame中使用iloc选择特定的行和列(例如df.iloc[0,1]),返回值将是该位置的具体值。

106-5、说明

106-5-1、iloc只接受整数类型的索引或者整数类型的切片。

106-5-2、如果索引超出了范围,会引发IndexError。

106-6、用法
106-6-1、数据准备
106-6-2、代码示例
# 106、pandas.Series.iloc方法
# 106-1、选择单个元素
import pandas as pd
s = pd.Series([10, 20, 30, 40])
print(s.iloc[2], end='\n\n')# 106-2、选择多个元素
import pandas as pd
s = pd.Series([10, 20, 30, 40])
print(s.iloc[[1, 3]], end='\n\n')# 106-3、切片
import pandas as pd
s = pd.Series([10, 20, 30, 40])
print(s.iloc[1:3], end='\n\n')  # 106-4、选择特定位置的行和列
import pandas as pd
# 对于Series,通常只涉及单一维度,但对于DataFrame,iloc可以用于选择特定的行和列。
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
print(df.iloc[0, 1])
106-6-3、结果输出
# 106、pandas.Series.iloc方法
# 106-1、选择单个元素
# 30# 106-2、选择多个元素
# 1    20
# 3    40
# dtype: int64# 106-3、切片 
# 1    20
# 2    30
# dtype: int64# 106-4、选择特定位置的行和列
# 4
107、pandas.Series.__iter__魔法方法
107-1、语法
# 107、pandas.Series.__iter__方法
pandas.Series.__iter__()
Return an iterator of the values.These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period)Returns:
iterator
107-2、参数

        无

107-3、功能

        让pandas.Series对象支持迭代。

107-4、返回值

        返回一个迭代器,可以逐个访问Series对象中的元素。

107-5、说明

107-5-1、返回值__iter__方法返回一个迭代器,该迭代器可以按Series对象中元素的顺序迭代。

107-5-2、性能:这个方法设计得非常高效,通常是通过直接访问底层的数据结构(如NumPy数组)来实现的,避免了不必要的内存开销。

107-5-3、内部实现__iter__ 方法内部通常会使用pandas库的数据结构(如Index对象和values属性)来实现高效的迭代。

107-5-4、用法:此方法使得Series可以与Python的其他迭代工具(如for循环、列表推导式等)无缝集成,简化了数据访问和处理的代码。

107-6、用法
107-6-1、数据准备
107-6-2、代码示例
# 107、pandas.Series.__iter__方法
import pandas as pd
# 创建一个Series对象
s = pd.Series([10, 20, 30, 40])
# 使用__iter__方法(隐式调用)
for value in s:print(value)
107-6-3、结果输出
# 107、pandas.Series.__iter__方法
# 10
# 20
# 30
# 40
108、pandas.Series.items方法
108-1、语法
# 108、pandas.Series.items方法
pandas.Series.items()
Lazily iterate over (index, value) tuples.This method returns an iterable tuple (index, value). This is convenient if you want to create a lazy iterator.Returns:
iterable
Iterable of tuples containing the (index, value) pairs from a Series.
108-2、参数

        无

108-3、功能

        用于返回一个生成器,这个生成器可以逐个提供pandas.Series对象中的每一个键值对,每个键值对以元组的形式返回,其中包含了Series的索引和值。

108-4、返回值

        返回一个生成器对象。每次迭代生成器时,都会返回一个包含Series索引和对应值的元组(index,value)

108-5、说明

108-5-1、返回类型:items方法返回的是一个生成器,这使得它在处理大数据集时比较高效,因为它不会一次性将所有数据加载到内存中。

108-5-2、用途:items方法通常用于需要同时访问索引和值的场景。例如,在进行数据遍历、构建报告或处理数据时,可以方便地获取每个索引和对应的值。

108-5-3、效率:由于生成器是惰性计算的,items方法的性能较好,尤其是当Series很大时,它不会立即生成所有的键值对,而是按需生成。

108-6、用法
108-6-1、数据准备
108-6-2、代码示例
# 108、pandas.Series.items方法
import pandas as pd
# 创建一个Series对象
s = pd.Series([10, 20, 30], index=['a', 'b', 'c'])
# 使用items方法获取生成器
for index, value in s.items():print(f"Index: {index}, Value: {value}")
108-6-3、结果输出
# 108、pandas.Series.items方法
# Index: a, Value: 10
# Index: b, Value: 20
# Index: c, Value: 30
109、pandas.Series.keys方法
109-1、语法
# 109、pandas.Series.keys方法
pandas.Series.keys()
Return alias for index.Returns:
Index
Index of the Series.
109-2、参数

        无

109-3、功能

        用于返回pandas.Series对象的索引,它提供了一种方便的方式来获取Series中所有索引标签的列表。

109-4、返回值

        返回一个Index对象,该对象包含了Series的所有索引标签。

109-5、说明

109-5-1、返回类型:keys方法返回一个Index对象,这是pandas中用于存储轴标签的基本对象。Index对象提供了一些有关标签的属性和方法,如tolist()将Index转换为列表。

109-5-2、用途:keys方法适用于需要获取Series索引标签的场景,特别是在处理数据时需要知道索引信息时。

109-5​​​​​​​-3、等效性:keys方法与index属性等效,实际上,调用s.keys()和s.index会得到相同的结果。

109-6、用法
109-6-1、数据准备
109-6-2、代码示例
# 109、pandas.Series.keys方法
import pandas as pd
# 创建一个Series对象
s = pd.Series([10, 20, 30], index=['a', 'b', 'c'])
# 使用keys方法获取索引
index_labels = s.keys()
print(index_labels)
109-6-3、结果输出
# 109、pandas.Series.keys方法
# Index(['a', 'b', 'c'], dtype='object')
110、pandas.Series.pop方法
110-1、语法
# 110、pandas.Series.pop方法
pandas.Series.pop(item)
Return item and drops from series. Raise KeyError if not found.Parameters:
item
label
Index of the element that needs to be removed.Returns:
Value that is popped from series.
110-2、参数

110-2-1、item(必须)表示要移除的索引标签。

110-3、功能

        用于从pandas.Series对象中删除一个指定的元素,并返回这个元素的值。

110-4、返回值

        返回被删除项的值,如果指定的标签不存在,则会引发一个KeyError。

110-5、说明

        无

110-6、用法
110-6-1、数据准备
110-6-2、代码示例
# 110、pandas.Series.pop方法
import pandas as pd
# 创建一个Series对象
s = pd.Series([10, 20, 30], index=['a', 'b', 'c'])
# 使用pop方法删除索引为'b'的项
value = s.pop('b')
print(value, end='\n\n')
# 打印修改后的Series对象
print(s)
110-6-3、结果输出
# 110、pandas.Series.pop方法
# 20
#
# a    10
# c    30
# dtype: int64

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/47268.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java程序的故障排查

文章目录 Linux命令关机/重启/注销系统信息和性能查看磁盘和分区⽤户和⽤户组⽹络和进程管理常⻅系统服务命令⽂件和⽬录操作⽂件查看和处理打包和解压RPM包管理命令YUM包管理命令DPKG包管理命令APT软件⼯具 JDK命令jpsjstatjinfojmapjhatjstackjcmdjconsole 分析工具VisualVME…

自动驾驶-预测概览

通过生成一条路径来预测一个物体的行为,在每一个时间段内,为每一辆汽车重新计算预测他们新生成的路径,这些预测路径为规划阶段做出决策提供了必要信息 预测路径有实时性的要求,预测模块能够学习新的行为。我们可以使用多源的数据…

超简单安装指定版本的clickhouse

超简单安装指定版本的clickhouse 命令执行shell脚本 idea连接 命令执行 参考官网 # 下载脚本 wget https://raw.githubusercontent.com/183461750/doc-record/d988dced891d70b23c153a3bbfecee67902a3757/middleware/data/clickhouse/clickhouse-install.sh # 执行安装脚本(中…

【漏洞复现】Netgear WN604 downloadFile.php 信息泄露漏洞(CVE-2024-6646)

0x01 产品简介 NETGEAR WN604是一款由NETGEAR(网件)公司生产的无线接入器(或无线路由器)提供Wi-Fi保护协议(WPA2-PSK, WPA-PSK),以及有线等效加密(WEP)64位、128位和152…

亲测--linux下安装ffmpeg最新版本---详细教程

下载地址 Download FFmpeg 下载最新的https://ffmpeg.org/releases/ffmpeg-7.0.1.tar.xz 上传到服务器 解压 tar xvf ffmpeg-7.0.1.tar.xz 编译 cd ffmpeg-7.0.1 ./configure --prefix=/usr/local/ffmpeg make && make install 报错: 解决:在后面加 跳过检测…

【Word】——小技巧

1.PDF相关转换word PDF转换成Word在线转换器 - 免费 - CleverPDF 2. word插入公式 1.软件推荐(免费) 可直接将图片,截屏公式转为word标准规范形式 2.网址推荐 在线LaTeX公式编辑器-编辑器 (每天有免费使次数) 3.…

Matlab演示三维坐标系旋转

function showTwo3DCoordinateSystemsWithAngleDifference() clear all close all % 第一个三维坐标系 origin1 [0 0 0]; x_axis1 [1 0 0]; y_axis1 [0 1 0]; z_axis1 [0 0 1];% 绕 x 轴旋转 30 度的旋转矩阵 theta_x 30 * pi / 180; rotation_matrix_x [1 0 0; 0 cos(th…

Linux服务器配置Python+PyTorch+CUDA深度学习环境

参考博主 Linux服务器配置PythonPyTorchCUDA深度学习环境_linux cuda环境配置-CSDN博客 https://blog.csdn.net/NSJim/article/details/115386936?ops_request_misc&request_id&biz_id102&utm_termlinux%E8%99%9A%E6%8B%9F%E7%8E%AF%E5%A2%83%E6%8C%89pytorch%20…

4核16G服务器支持多少人?4C16G服务器性能测评

租赁4核16G服务器费用,目前4核16G服务器10M带宽配置70元1个月、210元3个月,那么能如何呢?配置为ECS经济型e实例4核16G、按固定带宽10Mbs、100GB ESSD Entry系统盘。 那么问题来了,4C16G10M带宽的云服务器可以支持多少人同时在线&…

C++ ───List的使用

目录 1.1 list的介绍 1.2 list的使用 1.2.1 list的构造 1.2.2 list iterator的使用 1.2.3 list capacity 1.2.4 list element access 1.2.5 list modifiers 1.2.6 list的迭代器失效 1.1 list的介绍 1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器&…

2024年汉字小达人比赛区级活动学校选拔的题型预测和真题示例

上一篇文章,好真题网为大家介绍了2024年上海市小学生汉字小达人比赛活动的轮次、举办日期、参赛对象、报名方式、费用和如何备考的建议等。 有家长朋友问汉字小达人考试的内容和范围是什么,有哪些题型,以及汉字小达人比赛和上海市小学生古诗…

PDF压缩软件电脑版 电脑pdf压缩怎么压缩文件

在数字化时代,pdf文件因其良好的兼容性和稳定性,已成为工作与生活中不可或缺的文件格式。然而,随着内容的增多,pdf文件的体积也随之增大,给文件的传输和存储带来了一定的困扰。本文将为你详细介绍如何在电脑上压缩pdf文…

关于Redis的最常见的十道面试题

面试题一:Redis为什么执行这么快? Redis运行比较快主要原因有以下几种: 纯内存操作:Redis将所有数据存储在内存中,这意味着对数据的读写操作直接在内存中运行,而内存的访问速度远远高于磁盘。这种设计使得…

LNMP架构部署及应用

部署LNMP架构流程 1.安装Nginx(上传软件包,执行脚本) yum -y install pcre-devel zlib-devel gcc gcc useradd -M -s /sbin/nologin nginx tar zxf nginx-1.12.0.tar.gz cd nginx-1.12.0 ./configure --prefix/usr/local/nginx --usernginx…

python原型链污染

python原型链污染 ​ 后面会有跟着Article_kelp慢慢操作的,前面先面向题目学习。 背景: ​ 国赛遇到了这个考点,然后之后的DASCTF夏季挑战赛也碰到了,抓紧粗略学一手,学了JavaScript之后再深究原型链污染。 简介&a…

传输层和网络层的关系,ip协议+ip地址+ip报头字段介绍(4位TOP字段,8位生存时间(ttl)),ip地址和端口号的作用

目录 传输层和网络层的关系 引入 介绍 ip协议 介绍 ip地址 引入 数据传递过程 举例(ip地址的作用) ip报头 格式 4位版本号 ip地址不足的问题 8位服务类型 4位TOP(type of service)字段 最小延时 最大吞吐量 4位首部长度 16位总长度 8位协议号 首部校验和…

《样式设计001:表单的2种提交方式》

描述:在开发小程序过程中,发现一些不错的案例,平时使用也比较多,稍微总结了下经验,以下内容可以直接复制使用,希望对大家有所帮助,废话不多说直接上干货! 一:表单的2种…

【强化学习的数学原理】课程笔记--4(随机近似与随机梯度下降,时序差分方法)

目录 随机近似与随机梯度下降Mean estimationRobbins-Monro 算法用 Robbins-Monro 算法解释 Mean estimation用 Robbins-Monro 算法解释 Batch Gradient descent用 SGD 解释 Mean estimation SGD 的一个有趣的性质 时序差分方法Sarsa 算法一个例子 Expected Sarsa 算法n-step S…

电容认识和特点总结

图片 常见的电容名字及特点 名字特点容量和耐压独石电容MLCCMulti layer Ceramic Capacitors (多层陶瓷电容) 常见的贴片电容&#xff0c;容量大于瓷片电容0.5pF~100uF,耐压<100V瓷片/陶瓷电容耐压远高于独石电容,容量小<0.1uf&#xff0c;用于晶振旁路电容滤波铝电解电…

PY32F002B单片机 ISP 串口下载注意事项

一、PY32F002B ISP 串口下载的连接方式 仿真上的 VCC 和 GND 连接到 MCU 的 VCC 和 VSS&#xff0c; 仿真的 TX 接 MCU 的 RX&#xff0c;RX 接 MCU 的 TX。 二、因为 PY32F002B 没有 BOOT&#xff0c;需要用 ISP 串口下载的话需要下载串口引导程序。 下载这个目录下的 IAP…