人工智能培训老师叶梓:如何通过Prompt优化提升GPT-4性能

在人工智能领域,尤其是自然语言处理(NLP)中,Prompt工程是一种通过精心设计的提示(prompt)来引导模型生成期望输出的技术。最近,微软的研究团队通过Prompt优化策略,在医疗领域取得了显著的成果,并发现这些策略可以泛化到通用场景中,显著提升了GPT-4的性能。本文将探讨Prompt工程的基本概念、微软的策略以及如何通过Prompt优化提升GPT-4的性能。

1. Prompt工程的基本概念

Prompt工程是一种利用自然语言提示来引导语言模型的行为,使其更精确地执行特定任务的技术。这些提示可以是问题、指令或任何形式的文本,它们直接影响模型的输出质量。

2. 微软的Prompt优化策略

微软的研究团队通过创新的Prompt工程方法,显著提升了GPT-4在特定任务上的性能。以下是对Medprompt方法中三种策略的详细说明:

1). 动态少样本选择(Dynamic Few Shots)

概念:动态少样本选择是一种策略,它为模型提供与当前任务最相关的几个示例,帮助模型快速适应特定领域并学会遵循任务格式。

实现:该策略的核心在于选择与测试示例在语义上最相似的训练示例。这通过以下步骤实现:

  • 使用OpenAI的text-embedding-ada-002模型对候选示例进行嵌入,生成其在嵌入空间中的表示。
  • 对于每个测试问题,使用k-NN聚类从训练集中检索其最近的k个邻居,这些邻居在嵌入空间中与测试问题最相似。
  • 将这些最相似的示例作为少样本示例,用于提示模型。

优势:这种方法比固定不变的少样本示例更具有代表性和相关性,因为它能够根据每个测试示例的具体情况动态选择最合适的示例。

2). 思考链(Chain of Thought, CoT)

概念:思考链是一种鼓励模型生成一系列中间推理步骤的策略,以提高模型进行复杂推理的能力。

实现:与依赖专家手动组成的思考链示例不同,微软的策略通过自动化的方式生成这些推理步骤:

  • 要求GPT-4为训练示例生成思考链,即一系列逻辑推理步骤。
  • 通过适当的防范措施,如限制生成步骤的数量或使用验证机制,以减少错误推理链导致的错觉风险。

优势:自动化生成思考链减少了对人类专家的依赖,同时提高了模型解决复杂问题的能力。

3). 多数投票集成(Majority Vote Ensembling)

概念:集成技术通过组合多个算法的输出来提高预测性能。对于GPT-4这样的前沿模型,集成其自身输出可以进一步提升性能。

实现

  • 使用不同的提示或不同温度设置下的单个提示,生成多个推理路径。
  • 对于多项选择题,采用选择重排技术,在生成每个推理路径之前对答案选项的相对顺序进行随机重排。
  • 选择最一致的答案,即对选择重排最不敏感的答案,作为最终输出。

优势:这种方法增加了集成的多样性,并提高了答案的鲁棒性,尤其是在面对多项选择题时。

微软的Medprompt方法通过结合动态少样本选择、思考链和多数投票集成三种策略,有效地提升了GPT-4在特定任务上的性能。这些策略的创新之处在于它们能够动态适应任务需求,自动化生成推理步骤,并增加模型输出的鲁棒性。这些研究成果不仅在医疗领域具有重要价值,也为其他领域的Prompt工程提供了宝贵的经验和启示。

3. 提升GPT-4性能的关键点

1). 个性化的Prompt设计

个性化的Prompt设计是提升GPT-4性能的首要步骤。Prompt需要根据特定任务的需求精心设计,以确保模型能够准确理解任务要求并生成恰当的响应。个性化的Prompt设计包括:

  • 任务相关性:确保Prompt与手头的任务紧密相关,避免引入无关信息。
  • 清晰性:使用清晰、简洁的语言,避免歧义,确保模型能够准确把握指令。
  • 引导性:通过提问或指令的形式引导模型沿着特定的思路进行推理。
2). 动态样本选择

动态样本选择是微软Medprompt方法中的关键组成部分,它允许模型根据当前任务的具体情况选择最合适的样本。这种方法的优势在于:

  • 适应性:模型能够快速适应新的任务或领域,因为它不是依赖固定不变的样本,而是根据当前任务的需要动态选择样本。
  • 代表性:通过k-NN聚类等技术,模型能够选择在语义上与当前任务最相关的样本,从而提高输出的准确性。
3). 自动化的思考链生成

自动化的思考链生成是提升GPT-4推理能力的重要策略。通过自动化生成推理步骤,模型能够:

  • 生成中间推理步骤:模型能够生成一系列逻辑推理步骤,这些步骤有助于解决复杂的任务。
  • 减少对专家的依赖:自动化生成思考链减少了对人类专家的依赖,使得模型能够更广泛地应用于各种任务。
4). 集成方法的创新

集成方法通过组合多个模型的输出来提高预测性能。对于GPT-4,集成其自身输出可以进一步提升性能:

  • 多样性:通过使用不同的提示或温度设置,模型能够生成多样化的推理路径。
  • 鲁棒性:多数投票集成和选择重排技术增加了答案的鲁棒性,尤其是在面对多项选择题时。
5). 持续的优化和调整

为了持续提升GPT-4的性能,需要不断地对Prompt进行优化和调整:

  • 迭代测试:通过不断的测试和反馈,识别Prompt中的不足之处,并进行相应的调整。
  • 性能监控:监控模型在不同任务上的表现,以确定哪些Prompt最有效。

4. 应用前景与挑战

  • 任务相关性:确保Prompt与手头的任务紧密相关,避免引入无关信息。
  • 清晰性:使用清晰、简洁的语言,避免歧义,确保模型能够准确把握指令。
  • 引导性:通过提问或指令的形式引导模型沿着特定的思路进行推理。
  • 适应性:模型能够快速适应新的任务或领域,因为它不是依赖固定不变的样本,而是根据当前任务的需要动态选择样本。
  • 代表性:通过k-NN聚类等技术,模型能够选择在语义上与当前任务最相关的样本,从而提高输出的准确性。
  • 生成中间推理步骤:模型能够生成一系列逻辑推理步骤,这些步骤有助于解决复杂的任务。
  • 减少对专家的依赖:自动化生成思考链减少了对人类专家的依赖,使得模型能够更广泛地应用于各种任务。
  • 多样性:通过使用不同的提示或温度设置,模型能够生成多样化的推理路径。
  • 鲁棒性:多数投票集成和选择重排技术增加了答案的鲁棒性,尤其是在面对多项选择题时。
  • 迭代测试:通过不断的测试和反馈,识别Prompt中的不足之处,并进行相应的调整。
  • 性能监控:监控模型在不同任务上的表现,以确定哪些Prompt最有效。

Prompt工程在提升语言模型性能方面展现出巨大潜力,尤其在需要模型快速适应新领域或任务时。然而,这项技术也面临一些挑战,包括如何设计有效的Prompt、如何处理模型对特定Prompt的过度拟合,以及如何确保生成的推理链的准确性。

5. 结论

微软的研究展示了通过Prompt工程可以显著提升GPT-4在多个任务上的性能。这项工作不仅在医疗领域有重要应用,也为其他领域的研究提供了宝贵的参考。随着Prompt工程的不断发展,我们期待它在未来的人工智能应用中扮演更加重要的角色。

参考资料
  1. Medprompt: A Prompt-based Method for Efficiently Guiding General-purpose Models to Expert-Level Performance on Medical Tasks
  2. Microsoft/promptbase GitHub repository

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/467.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis系列1:深刻理解高性能Redis的本质

1 背景 分布式系统绕不开的核心之一的就是数据缓存,有了缓存的支撑,系统的整体吞吐量会有很大的提升。通过使用缓存,我们把频繁查询的数据由磁盘调度到缓存中,保证数据的高效率读写。 当然,除了在内存内运行还远远不够…

K3S 证书有效期和续签问题

本文使用k3s版本:k3s version v1.24.17k3s1 (026bb0ec) 默认安装情况下,ca证书有效期是10年,普通证书有效期是1年。 普通证书 k3s官网描述:K3s 客户端和服务器证书自颁发日起 365 天内有效。每次启动 K3s 时,已过期或…

linux 云计算平台基本环境(知识准备篇)

为了更多的了解云计算平台,结合云计算和linux的知识写了一篇云计算的介绍和汇总。 文章目录 前言1. centos的软件管理1.1 yum软件包管理1.1.1 yum命令语法:1.1.2 安装软件包的步骤1.1.3 yum源 2. 主机名管理与域名解析3. centos的防火墙管理4. openstack…

java锁介绍

乐观锁 乐观地认为并发访问不会造成数据冲突,只在更新时检查是否有冲突。乐观锁和CAS的关系可以用“乐观锁是一种思想,CAS是一种具体的实现”来理解。 当使用CAS操作修改数据时,如果版本号不匹配或者其他线程已经修改了要操作的数据&#x…

面试题集中营—分布式共识算法

分布式共识算法目标 分布式主要就是为了解决单点故障。一开始只有一个服务节点提供服务,如下图所示。那么如果服务节点挂了,对不起等着吧。 为了服务的高可用性,我们一般都会多引入几个副节点当备份,当服务节点挂了,就…

记一次Mac(M1)交叉编译Windows系统的过程

做了一个导出文件项目来实践学习GO的成果,开发完成后,在本地调试环境一切正常,打包到Windows测试出现了报错Error: Binary was compiled with CGO_ENABLED0, go-sqlite3 requires cgo to work. This is a stub。后研究得知,gorm的…

如何逃过极域的管控

本文由Jzwalliser原创,发布在CSDN平台上,遵循CC 4.0 BY-SA协议。 因此,若需转载/引用本文,请注明作者并附原文链接,且禁止删除/修改本段文字。 违者必究,谢谢配合。 个人主页:blog.csdn.net/jzw…

【Java框架】Spring框架(四)——Spring中的Bean的创建与生命周期

目录 SpringBean的创建步骤后置处理器(PostProcessor)BeanFactoryPostProcessorBeanPostProcessorInstantiationAwareBeanPostProcessorpostProcessBeforeInstantiationpostProcessAfterInstantiationpostProcessProperties SmartInstantiationAwareBeanPostProcessordetermine…

医疗大模型产品设计

医疗领域的大型模型可以涵盖许多功能点,以提供全面的医疗支持和解决方案。以下是一些可能的功能点设计: 1. **疾病诊断与预测**:利用机器学习算法和医疗数据对患者的症状进行诊断和预测,帮助医生提供更准确的诊断和治疗建议。 2…

如何采集opc服务器数据上传云端

为了进一步提高生产效率,生产制造的不断朝着智能化发展和升级,传统的自动化生产系统已经不能满足需求。传统的SCADA系统一般是用于现场的数据采集与控制,但是本地控制已经无法满足整个工厂系统智能化数字化的需求,智能化数字化是需…

呼叫系统的技术实现原理和运作流程,ai智能系统,呼叫中心外呼软交换部署

呼叫系统的技术实现原理和运作流程可以涉及多个组成部分,包括硬件设备、软件系统和通信协议。以下是一般情况下呼叫系统的技术实现原理和运作流程的概述: 硬件设备: 服务器:用于承载呼叫系统的核心软件和数据库。电话交换机&#…

《手把手教你》系列基础篇(九十五)-java+ selenium自动化测试-框架之设计篇-java实现自定义日志输出(详解教程)

1.简介 前面宏哥一连几篇介绍如何通过开源jar包Log4j.jar、log4j2.jar和logback实现日志文件输出,Log4j和logback确实很强大,能生成三种日志文件,一种是保存到磁盘的日志文件,一种是控制台输出的日志,还有一种是HTML格…

Docker 镜像仓库常见命令

Docker Registry (镜像仓库) 常用命令 docker login 功能:登录到一个 Docker 镜像仓库,如果没有指定镜像仓库的地址,默认就是官方的 Docker Hub 仓库。 语法: docker login [options] [server]选项: -u:登…

字母加密(C语言)

一、题目; 为使电文保密,往往按一定规律将其转换成密码,收报人再按约定的规律将其译回原文。例如,可以按以下规律将电文变成密码:将字母A变成字母E,a变成e,即变成其后的第4个字母,W…

<script>和<script setup>的区别

在Vue 3中&#xff0c;<script setup>是Composition API的一个语法糖&#xff0c;它提供了一种更简洁的方式来编写组件逻辑。使用<script setup>&#xff0c;您可以在组件外部直接导入或定义方法和响应式数据&#xff0c;而不需要在setup()函数内部进行。 <scr…

iframe嵌套页面 拒绝访问 X-Frame-Options配置

iframe嵌套页面 拒绝访问 X-Frame-Options配置 iframe拒绝访问 X-Frame-Options: deny X-Frame-Options: sameorigin X-Frame-Options: allow-from https://example.com/deny 表示该页面不允许在 frame 中展示&#xff0c;即便是在相同域名的页面中嵌套也不允许。 sameorigi…

[源码分享]基于Unity的Live2D虚拟人物——结合了GPT、Azure、情绪识别和口型同步,也可以集合苹果Vision Pro做成3D的形象

# 技术文档 ## 1 项目简介 ### 项目目录 ``` Assets ├─ Animator // 动画 ├─ Code // 代码 │ ├─ AI // AI 模块 │ │ ├─ LM // 语言模型模块 │…

notepad++的使用技巧

notepad的使用技巧_notpad垂直粘贴-CSDN博客 notepad的使用技巧 多视图 视图----移动/复制到当前文档-----移动到另一视图&#xff08;可以配合水平/垂直同步滚动功能&#xff09; 书签功能 在任意行点击左边栏或者按CtrlF2会出现蓝色小点&#xff0c;这表示添加了一个书签…

算法训练 | 使用JAX训练CLIP算法_支持fine-tuning

项目应用场景 面向 CLIP 算法训练场景&#xff0c;项目采用 JAX 来实现 CLIP 算法的训练&#xff0c;支持 fine-tuning。 项目细节 > 具体参见项目 README.md (1) 安装 pip install clip-jax (2) 下载训练数据 # clone and install datacomp# download data python downl…

基于Springboot+Vue的Java项目-网上购物商城系统开发实战(附演示视频+源码+LW)

大家好&#xff01;我是程序员一帆&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f49e;当前专栏&#xff1a;Java毕业设计 精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; &#x1f380; Python毕业设计 &am…