排序算法(4)之快速排序(2)

 个人主页:C++忠实粉丝
欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C++忠实粉丝 原创

排序算法(4)之快速排序(2)

收录于专栏【数据结构初阶
本专栏旨在分享学习数据结构学习的一点学习笔记,欢迎大家在评论区交流讨论💌

目录

前置说明

1.快速排序的优化

测试代码

1.hoare版本

2.挖坑法

3.前后指针法

1.1三数取中

1.2小区间优化

优化后的快速排序

2.快速排序的非递归实现 

完整代码:

3.总结


前置说明

大家对快排还不是很了解的可以先去看--排序算法(4)之快速排序(1)-CSDN博客

1.快速排序的优化

上章节我们说到了快排有三个版本,分别是hoare版本,挖坑法和前后指针法,现在我就分别测试一下它们的性能.

测试代码

测试链接--912. 排序数组 - 力扣(LeetCode)

1.hoare版本

代码展示:

void Swap(int* n, int* m)
{int p = *n;*n = *m;*m = p;
}
//hoare版本
void QuickSort1(int* a, int left, int right)
{if (left >= right)return;int keyi = left;int begin = left, end = right;while (begin < end){//右边找小while (begin < end && a[end] >= a[keyi]){end--;}//左边找大while (begin < end && a[begin] <= a[keyi]){++begin;}Swap(&a[begin], &a[end]);}Swap(&a[keyi], &a[begin]);keyi = begin;//[left,keyi-1] keyi [keyi+1, right]QuickSort1(a, left, keyi - 1);QuickSort1(a, keyi + 1, right);
}int* sortArray(int* nums, int numsSize, int* returnSize) {(*returnSize) = numsSize;int* array = (int*)malloc(sizeof(int)*(*returnSize));for(int i = 0; i < numsSize; i++){array[i] = nums[i];}QuickSort1(array, 0, numsSize-1);return array;
}

结果展示: 

 发现当数据有序时,会超出时间限制....

2.挖坑法

代码展示:

//挖坑法
void QuickSort2(int* a, int left, int right) {if (left >= right)return;int key = a[left]; // 选择第一个元素作为基准值int low = left, high = right;while (low < high) {// 从右向左找到第一个小于基准值key的元素while (low < high && a[high] >= key)high--;if (low < high) {a[low] = a[high]; // 使用 a[high] 的值填充 a[low] 的坑low++;}// 从左向右找到第一个大于基准值key的元素while (low < high && a[low] <= key)low++;if (low < high) {a[high] = a[low]; // 使用 a[low] 的值填充 a[high] 的坑high--;}}a[low] = key; // 将基准值放入最终的坑中int pivot = low; // 基准值的最终位置QuickSort2(a, left, pivot - 1); // 对左子数组递归排序QuickSort2(a, pivot + 1, right); // 对右子数组递归排序
}int* sortArray(int* nums, int numsSize, int* returnSize) {(*returnSize) = numsSize;int* array = (int*)malloc(sizeof(int)*(*returnSize));for(int i = 0; i < numsSize; i++){array[i] = nums[i];}QuickSort2(array, 0, numsSize-1);return array;
}

结果展示:

 

3.前后指针法

代码展示:

// 前后指针_快速排序
void QuickSort3(int* a, int left, int right)
{if (left >= right)return;int keyi = left;int prev = left;int cur = prev + 1;while (cur <= right){if (a[cur] < a[keyi] && ++prev != cur)Swap(&a[prev], &a[cur]);cur++;}Swap(&a[prev], &a[keyi]);keyi = prev;QuickSort3(a, left, keyi - 1);QuickSort3(a, keyi + 1, right);
}int* sortArray(int* nums, int numsSize, int* returnSize) {(*returnSize) = numsSize;int* array = (int*)malloc(sizeof(int)*(*returnSize));for(int i = 0; i < numsSize; i++){array[i] = nums[i];}QuickSort3(array, 0, numsSize-1);return array;
}

 

结果显然,三个方法都没有通过,快排作为排序界的杠把子,难道就这么拉吗?都跟冒泡和选择排序一个挡位了,所以这里我们需要进一步优化快速排序.

1.1三数取中

以hoare版本为例,key都是取左端点.在有序序列中,原本分区的时间复杂度为O(logN)就会转换成O(N),这就会导致快速排序遇到有序或逆序时,时间复杂度就会变成O(N^2)

示例:

当key为中间值时,满足O(logN)的时间复杂度

当key为最小或最大值时 ,时间复杂度为O(N):

这里还有可能存在栈溢出的风险

 所以快排里面有一个取中的方式,让key不会成为最大数或者时最小数,这里就介绍一下三数取中的方式:

这里的三数是指:left,right,midi((left+right)/2,我们需要在这三个数中找出中间值并赋值给key

代码展示:

int GetMidi(int* a, int left, int right)
{int midi = (left + right) / 2;// left midi rightif (a[left] < a[midi]){if (a[midi] < a[right]){return midi;}else if (a[left] < a[right]){return right;}else{return left;}}else // a[left] > a[midi]{if (a[midi] > a[right]){return midi;}else if (a[left] < a[right]){return left;}else{return right;}}
}

1.2小区间优化

快速排序类似于二叉树递归的过程,越处于底层的数据会被重复调用多次,所以可以当划分的数列小于10时,可.直接调用其他排序,比如插入排序,直接排好,能减少很大一部分数据的递归调用,

 

代码展示:

	// 小区间优化,不再递归分割排序,减少递归的次数if ((right - left + 1) < 10){InsertSort(a + left, right - left + 1);}void InsertSort(int* a, int n)
{//  [0, n-1]for (int i = 0; i < n - 1; i++){// [0, n-2]是最后一组// [0,end]有序 end+1位置的值插入[0,end],保持有序int end = i;int tmp = a[end + 1];while (end >= 0){if (tmp < a[end]){a[end + 1] = a[end];--end;}else{break;}}a[end + 1] = tmp;}
}

优化后的快速排序

void InsertSort(int* a, int n)
{//  [0, n-1]for (int i = 0; i < n - 1; i++){// [0, n-2]是最后一组// [0,end]有序 end+1位置的值插入[0,end],保持有序int end = i;int tmp = a[end + 1];while (end >= 0){if (tmp < a[end]){a[end + 1] = a[end];--end;}else{break;}}a[end + 1] = tmp;}
}void Swap(int* n, int* m)
{int p = *n;*n = *m;*m = p;
}
//hoare版本
int GetMidi(int* a, int left, int right)
{int midi = (left + right) / 2;// left midi rightif (a[left] == a[midi] && a[left] == a[midi] && a[midi] == a[right])return midi;else if (a[left] < a[midi]){if (a[midi] < a[right]){return midi;}else if (a[left] < a[right]){return right;}else{return left;}}else // a[left] > a[midi]{if (a[midi] > a[right]){return midi;}else if (a[left] < a[right]){return left;}else{return right;}}
}// 避免有序情况下,效率退化
//三数取中
//小区间优化
void QuickSort(int* a, int left, int right)
{if (left >= right)return;// 小区间优化,不再递归分割排序,减少递归的次数if ((right - left + 1) < 10){InsertSort(a + left, right - left + 1);}else{// 三数取中int midi = GetMidi(a, left, right);Swap(&a[left], &a[midi]);int keyi = left;int begin = left, end = right;while (begin < end){// 右边找小while (begin < end && a[end] >= a[keyi]){--end;}// 左边找大while (begin < end && a[begin] <= a[keyi]){++begin;}Swap(&a[begin], &a[end]);}Swap(&a[keyi], &a[begin]);keyi = begin;// [left, keyi-1] keyi [keyi+1, right]QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);}
}

InsertSort 函数

  • 实现了插入排序算法,将传入的数组 a 按升序排序。
  • 在外部循环中,逐步将数组分为已排序部分和未排序部分。
  • 内部循环通过比较当前元素和已排序部分的元素,找到合适位置插入当前元素,保证数组的有序性。

Swap 函数:

        辅助函数,用于交换两个整数指针所指向的值。

GetMidi 函数:

  • 用于选择三个元素中间值作为快速排序的枢轴(pivot)。
  • 考虑了数组左端、中间和右端三个位置的元素,确保选择合适的枢轴来避免最坏情况下的效率问题。

QuickSort 函数:

  • 实现了快速排序算法。
  • 在大于等于10个元素时,采用快速排序策略,选择枢轴、分割数组、递归排序子数组。
  • 小于10个元素时,采用插入排序优化,减少递归深度,提高效率。

 

2.快速排序的非递归实现 

上面说到过,由于快速排序是递归实现的,在遇到有序或者无序的序列会有栈溢出的风险,所以快速排序的非递归实现是有必要的.

思路: 

利用栈后进先出的特点,模拟快速排序的过程

代码展示:

void QuickSortNonR(int* a, int left, int right)
{ST st;STInit(&st);STPush(&st, right);STPush(&st, left);while (!STEmpty(&st)){int begin = STTop(&st);STPop(&st);int end = STTop(&st);STPop(&st);int keyi = PartSort2(a, begin, end);// [begin, keyi-1] keyi [keyi+1, end]if (keyi + 1 < end){STPush(&st, end);STPush(&st, keyi + 1);}if (begin < keyi - 1){STPush(&st, keyi - 1);STPush(&st, begin);}}STDestroy(&st);
}

分析:

数据结构和函数调用

ST 是一个栈结构,具备以下操作:

  • STInit(&st):初始化栈 st
  • STPush(&st, val):将 val 压入栈 st
  • STTop(&st):获取栈顶元素但不弹出。
  • STPop(&st):弹出栈顶元素。

非递归快速排序实现

  • 主要逻辑通过栈来维护排序区间的边界。
  • 初始时,将整个数组的左右边界分别压入栈中,表示整个数组需要排序。
  • 进入循环,不断从栈中取出左右边界,执行分区操作(PartSort2 函数),得到分区点 keyi
  • 根据分区点 keyi,将数组分为 [begin, keyi-1]keyi[keyi+1, end] 三部分。
  • 如果左边界小于 keyi - 1,说明左侧还有未排序部分,将其左右边界压入栈中。
  • 如果右边界大于 keyi + 1,同理将其左右边界压入栈中。

循环结束条件

当栈为空时,说明所有区间已经排序完成,循环结束。

PartSort2 函数

它的作用是进行数组的分区操作,将数组按照某个基准值分成左右两部分,并返回基准值最终的位置。(可以是hoare,挖坑法,前后指针法)

完整代码:

Stack.h

#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
#include<assert.h>typedef int STDataType;typedef struct Stack
{STDataType* a;int top;int capacity;
}ST;// 初始化和销毁
void STInit(ST* pst);
void STDestroy(ST* pst);// 入栈  出栈
void STPush(ST* pst, STDataType x);
void STPop(ST* pst);// 取栈顶数据
STDataType STTop(ST* pst);// 判空
bool STEmpty(ST* pst);
// 获取数据个数
int STSize(ST* pst);

Stack.c 

#include"Stack.h"// 初始化和销毁
void STInit(ST* pst)
{assert(pst);pst->a = NULL;// top指向栈顶数据的下一个位置pst->top = 0;// top指向栈顶数据//pst->top = -1;pst->capacity = 0;
}void STDestroy(ST* pst)
{assert(pst);free(pst->a);pst->a = NULL;pst->top = pst->capacity = 0;
}// 入栈  出栈
void STPush(ST* pst, STDataType x)
{assert(pst);// 扩容if (pst->top == pst->capacity){int newcapacity = pst->capacity == 0 ? 4 : pst->capacity * 2;STDataType* tmp = (STDataType*)realloc(pst->a, newcapacity * sizeof(STDataType));if (tmp == NULL){perror("realloc fail");return;}pst->a = tmp;pst->capacity = newcapacity;}pst->a[pst->top] = x;pst->top++;
}void STPop(ST* pst)
{assert(pst);assert(pst->top > 0);pst->top--;
}// 20:08继续
// 取栈顶数据
STDataType STTop(ST* pst)
{assert(pst);assert(pst->top > 0);return pst->a[pst->top - 1];
}// 判空
bool STEmpty(ST* pst)
{assert(pst);return pst->top == 0;
}// 获取数据个数
int STSize(ST* pst)
{assert(pst);return pst->top;
}

Sort.c

int GetMidi(int* a, int left, int right)
{int midi = (left + right) / 2;// left midi rightif (a[left] < a[midi]){if (a[midi] < a[right]){return midi;}else if (a[left] < a[right]){return right;}else{return left;}}else // a[left] > a[midi]{if (a[midi] > a[right]){return midi;}else if (a[left] < a[right]){return left;}else{return right;}}
}// hoare
int PartSort1(int* a, int left, int right)
{// 三数取中int midi = GetMidi(a, left, right);Swap(&a[left], &a[midi]);int keyi = left;int begin = left, end = right;while (begin < end){// 右边找小while (begin < end && a[end] >= a[keyi]){--end;}// 左边找大while (begin < end && a[begin] <= a[keyi]){++begin;}Swap(&a[begin], &a[end]);}Swap(&a[keyi], &a[begin]);return begin;
}// 前后指针
int PartSort2(int* a, int left, int right)
{// 三数取中int midi = GetMidi(a, left, right);Swap(&a[left], &a[midi]);int keyi = left;int prev = left;int cur = prev + 1;while (cur <= right){if (a[cur] < a[keyi] && ++prev != cur)Swap(&a[prev], &a[cur]);cur++;}Swap(&a[prev], &a[keyi]);return prev;
}// 避免有序情况下,效率退化
// 1、随机选key
// 2、三数取中
//
//void QuickSort(int* a, int left, int right)
//{
//	if (left >= right)
//		return;
//
//	int keyi = PartSort1(a, left, right);
//
//	 [left, keyi-1] keyi [keyi+1, right]
//	QuickSort(a, left, keyi - 1);
//	QuickSort(a, keyi + 1, right);
//}#include"Stack.h"void QuickSortNonR(int* a, int left, int right)
{ST st;STInit(&st);STPush(&st, right);STPush(&st, left);while (!STEmpty(&st)){int begin = STTop(&st);STPop(&st);int end = STTop(&st);STPop(&st);int keyi = PartSort2(a, begin, end);// [begin, keyi-1] keyi [keyi+1, end]if (keyi + 1 < end){STPush(&st, end);STPush(&st, keyi + 1);}if (begin < keyi - 1){STPush(&st, keyi - 1);STPush(&st, begin);}}STDestroy(&st);
}

3.总结

非递归与递归快速排序的对比

  • 非递归版本避免了递归调用的额外开销,使用栈来存储分割点,节省了空间。
  • 在处理大规模数据时,递归深度可能导致栈溢出,而非递归版本则能够更好地应对这种情况。

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/46546.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

剧本杀小程序搭建,为商家带来新的收益方向

近几年&#xff0c;剧本杀游戏成为了游戏市场的一匹黑马&#xff0c;受到了不少年轻玩家的欢迎。随着信息技术的快速发展&#xff0c;传统的剧本杀门店已经无法满足游戏玩家日益增长的需求&#xff0c;因此&#xff0c;剧本杀市场开始向线上模式发展&#xff0c;实现行业数字化…

linux中list的基本用法

内核链表 1 list_head 结构 为了使用链表机制&#xff0c;驱动程序需要包含<linux/types.h>头文件&#xff0c;该文件定义了如下结构体实现双向链&#xff1a; struct list_head {struct list_head *next, *prev; };2 链表的初始化 2.1 链表宏定义和初始化 可使用以…

汽车免拆诊断案例 | 卡罗拉急加速抖动故障排除

车型信息 2017年改款卡罗拉&#xff0c;排量1.2T&#xff0c;行驶里程48800公里。 故障现象 车辆不管在什么状态下&#xff0c;只要是平缓加速&#xff0c;都不会有抖动。车辆静止时&#xff0c;急加速时&#xff0c;也不会有抖动。但是车速达40公里/小时以上&#xff0c;急加…

【python基础】基本数据类型

文章目录 一. Python基本数据类型1. 整数1.1. python的四种进制1.2. 数中的下划线 2. 浮点数3. 复数4. 布尔型5. 运算符5.1. 算术运算符5.2. 比较运算符5.3. 逻辑运算符5.4 运算符优先级 6. 常量 二. 注释三. Python之禅 一. Python基本数据类型 1. 整数 无长度限制&#xff1…

PWM再理解(1)

前言 昨天过于劳累&#xff0c;十点睡觉&#xff0c;本来想梳理一下PWM&#xff0c;今天补上。 PWM内涵 PWM全称&#xff1a;Pulse Width Modulation&#xff0c;也就是脉宽调制的意思&#xff0c;字面意思理解就是对脉冲的宽度进行改变。准确就是通过数字输出对模拟电路进行…

怎样优化 PostgreSQL 中对复杂的日期时间格式转换和时区处理?

&#x1f345;关注博主&#x1f397;️ 带你畅游技术世界&#xff0c;不错过每一次成长机会&#xff01;&#x1f4da;领书&#xff1a;PostgreSQL 入门到精通.pdf 文章目录 怎样优化 PostgreSQL 中对复杂的日期时间格式转换和时区处理&#xff1f; 怎样优化 PostgreSQL 中对复…

Python | Leetcode Python题解之第257题二叉树的所有路径

题目&#xff1a; 题解&#xff1a; class Solution:def binaryTreePaths(self, root: TreeNode) -> List[str]:paths list()if not root:return pathsnode_queue collections.deque([root])path_queue collections.deque([str(root.val)])while node_queue:node node_…

2024年06月CCF-GESP编程能力等级认证C++编程八级真题解析

本文收录于专栏《C等级认证CCF-GESP真题解析》&#xff0c;专栏总目录&#xff1a;点这里。订阅后可阅读专栏内所有文章。 一、单选题&#xff08;每题 2 分&#xff0c;共 30 分&#xff09; 第 1 题 GESP活动期间&#xff0c;举办方从获胜者ABCDE五个人中选出三个人排成一队…

NLP教程:1 词袋模型和TFIDF模型

文章目录 词袋模型TF-IDF模型词汇表模型 词袋模型 文本特征提取有两个非常重要的模型&#xff1a; 词集模型&#xff1a;单词构成的集合&#xff0c;集合自然每个元素都只有一个&#xff0c;也即词集中的每个单词都只有一个。 词袋模型&#xff1a;在词集的基础上如果一个单词…

上海理工大学24计算机考研考情分析!初复试分值比55:45,复试逆袭人数不算多!

上海理工大学&#xff08;University of Shanghai for Science and Technology&#xff09;&#xff0c;位于上海市&#xff0c;是一所以工学为主&#xff0c;工学、理学、经济学、管理学、文学、法学、艺术学等多学科协调发展的应用研究型大学&#xff1b;是上海市属重点建设大…

Linux系统及常用指令

目录 1、什么是Linux系统 2、为什么要用Linux系统 3、Linux系统的种类 4、如何安装Linux系统 5、常见的适配器种类 6、学习第一个Linux指令 7、安装ssh客户端软件 8、Linux系统的目录结构 9、Linux的常用命令 9.1 目录切换命令 9.2 查看目录下的内容 9.3 查看当前…

vue项目build以后整合到springboot项目里面---------gxl

很多时候我们需要用到vue的组件&#xff0c;但是全栈的背景下懒得去搞前后端分离&#xff0c;很多权限校验后台都写好了&#xff0c;没必要再去做接口或者前端写一遍了&#xff0c;因此我们需要把打包后的项目整合到项目里面。 整合也很简单&#xff0c;照常vue项目开发&#…

UE4-蓝图(可视化编程)学习

一.开关门交互实现 1.需要用到的模板和内容包 2.给门添加碰撞 进入第三人称模板场景&#xff0c;找到门的模型&#xff0c;并将门的模型添加到我们的场景中&#xff1a; 此时我们运行游戏&#xff0c;会发现我们的角色可以穿过我们门的模型&#xff0c;说明我们没有给门添加碰…

水利行业的智慧转型之路:分析智慧水利的核心要素与优势,展望其在提升水资源利用效率、保障水安全方面的广阔前景

目录 引言 一、智慧水利的核心要素 1. 物联网技术 2. 大数据与云计算 3. 人工智能与机器学习 4. 移动互联网与GIS技术 5. 标准化与信息安全 二、智慧水利的优势 1. 提高水资源利用效率 2. 增强水灾害防御能力 3. 提升水环境治理水平 4. 促进水利服务智能化 三、展望…

Grafana :利用Explore方式实现多条件查询

背景 日志统一推送到Grafana上管理。所以&#xff0c;有了在Grafana上进行日志搜索的需求&#xff0c;而进行日志搜索通常需要多条件组合。 解决方案 通过Grafana的Explore的方式实现多条件查询。 直接看操作步骤&#xff1a; 在主页搜索框中输入“Explore” 进入这个界面…

Elasticsearch:评估搜索相关性 - 第 1 部分

作者&#xff1a;来自 Elastic Thanos Papaoikonomou, Thomas Veasey 这是一系列博客文章中的第一篇&#xff0c;讨论如何在更好地理解 BEIR 基准的背景下考虑评估你自己的搜索系统。我们将介绍具体的技巧和技术&#xff0c;以便在更好地理解 BEIR 的背景下改进你的搜索评估流程…

静态网站怎么更新数据

今天看到个问题 我不是行业从业者&#xff0c;但目前遇到一个问题 我公司网站为纯静态&#xff0c;除了直接从html里修改文字外能不能这样 建立一个xml或者txt文档&#xff0c;其中有很多信息&#xff0c;例如网站名称&#xff0c;电话&#xff0c;备案号等&#xff0c;一行一行…

Java 网络编程(TCP编程 和 UDP编程)

1. Java 网络编程&#xff08;TCP编程 和 UDP编程&#xff09; 文章目录 1. Java 网络编程&#xff08;TCP编程 和 UDP编程&#xff09;2. 网络编程的概念3. IP 地址3.1 IP地址相关的&#xff1a;域名与DNS 4. 端口号&#xff08;port&#xff09;5. 通信协议5.1 通信协议相关的…

40.简易频率计(基于等精度测量法)(3)

&#xff08;1&#xff09;BCD8421码&#xff1a;十进制数字转换成BCD8421码的方法 补零&#xff1a;你需要显示多少位数字&#xff0c;就在前面补上四倍的位宽。比如你要显示一个十进制8位的数字&#xff0c;就在前面补上8*432个零。判断&#xff1a;判断补零部分显示的十进制…

叉车指纹一键启动/熄火车辆,“锁”住叉车安全

在现代工业领域&#xff0c;叉车作为重要的物流搬运工具&#xff0c;其安全性和便捷性一直是人们关注的焦点。为此&#xff0c;我们引入了一项技术——叉车指纹一键启动/熄火系统&#xff0c;真正实现了叉车安全的“锁定”。 这项技术不仅仅是简单的启动或关闭车辆的手段&#…