NLP教程:1 词袋模型和TFIDF模型

文章目录

  • 词袋模型
  • TF-IDF模型
  • 词汇表模型


词袋模型

  文本特征提取有两个非常重要的模型:

  • 词集模型:单词构成的集合,集合自然每个元素都只有一个,也即词集中的每个单词都只有一个。

  • 词袋模型:在词集的基础上如果一个单词在文档中出现不止一次,统计其出现的次数(频数)。

  两者本质上的区别,词袋是在词集的基础上增加了频率的维度,词集只关注有和没有,词袋还要关注有几个。
  假设我们要对一篇文章进行特征化,最常见的方式就是词袋。
  导入相关的函数库:

from sklearn.feature_extraction.text import CountVectorizer

  实例化分词对象:

vectorizer = CountVectorizer(min_df=1)
>>> vectorizer                    CountVectorizer(analyzer=...'word', binary=False, decode_error=...'strict',dtype=<... 'numpy.int64'>, encoding=...'utf-8', input=...'content',lowercase=True, max_df=1.0, max_features=None, min_df=1,ngram_range=(1, 1), preprocessor=None, stop_words=None,strip_accents=None, token_pattern=...'(?u)\\b\\w\\w+\\b',tokenizer=None, vocabulary=None)

  将文本进行词袋处理:

import jieba
from sklearn.feature_extraction.text import CountVectorizertxt="""
变压器停、送电操作时,应先将该变压器中性点接地,对于调度要求不接地的变压器,在投入系统后应拉开中性点接地刀闸。在中性点直接接地系统中,运行中的变压器中性点接地闸刀需倒换时,应先合上另一台主变压器的中性点接地闸刀,再拉开原来变压器的中性点接地闸刀。运行中的变压器中性点接地方式、中性点倒换操作的原则是保证该网络不失去接地点,采用先合后拉的操作方法。
变压器中性点的接地方式变化后其保护应相应调整,即是变压器中性点接地运行时,投入中性点零序过流保护,停用中性点零序过压保护及间隔零序过流保护;变压器中性点不接地运行时,投入中性点零序过压保护及间隔零序保护,停用中性点零序过流保护,否则有可能造成保护误动作。
"""
words = jieba.lcut(txt)     # 使用精确模式对文本进行分词
vectorizer = CountVectorizer(min_df=1)#min_df 默认为1(int),表示“忽略少于1个文档中出现的术语”,因此,默认设置不会忽略任何术语,该参数不起作用X = vectorizer.fit_transform(words)#获取对应的特征名称:
print(vectorizer.get_feature_names())#feature_names可能不等于words
#词袋化
print(X.toarray())

词袋类似array([[0, 1, 1, 1, 0, 0, 1, 0, 1],
[0, 1, 0, 1, 0, 2, 1, 0, 1],
[1, 0, 0, 0, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 0, 0, 1, 0, 1]]…)

  但是如何可以使用现有的词袋的特征,对其他文本进行特征提取呢?我们定义词袋的特征空间叫做词汇表vocabulary:

vocabulary=vectorizer.vocabulary_

  针对其他文本进行词袋处理时,可以直接使用现有的词汇表:

new_vectorizer = CountVectorizer(min_df=1, vocabulary=vocabulary)

  CountVectorize函数比较重要的几个参数为:

  • decode_error,处理解码失败的方式,分为‘strict’、‘ignore’、‘replace’三种方式。
  • strip_accents,在预处理步骤中移除重音的方式。
  • max_features,词袋特征个数的最大值。
  • stop_words,判断word结束的方式。
  • max_df,df最大值。
  • min_df,df最小值 。
  • binary,默认为False,当与TF-IDF结合使用时需要设置为True。
    本例中处理的数据集均为英文,所以针对解码失败直接忽略,使用ignore方式,stop_words的方式使用english,strip_accents方式为ascii方式。

TF-IDF模型

  文本处理领域还有一种特征提取方法,叫做TF-IDF模型(term frequency–inverse document frequency,词频与逆向文件频率)。TF-IDF是一种统计方法,用以评估某一字词对于一个文件集或一个语料库的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级。
TF-IDF的主要思想是,如果某个词或短语在一篇文章中出现的频率TF(Term Frequency,词频),词频高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。TF-IDF实际上是:TF * IDF。TF表示词条在文档d中出现的频率。IDF(inverse document frequency,逆向文件频率)的主要思想是:如果包含词条t的文档越少,也就是n越小,IDF越大,则说明词条t具有很好的类别区分能力。如果某一类文档C中包含词条t的文档数为m,而其他类包含t的文档总数为k,显然所有包含t的文档数n=m+k,当m大的时候,n也大,按照IDF公式得到的IDF的值会小,就说明该词条t类别区分能力不强。但是实际上,如果一个词条在一个类的文档中频繁出现,则说明该词条能够很好代表这个类的文本的特征,这样的词条应该给它们赋予较高的权重,并选来作为该类文本的特征词以区别与其他类文档。

示例
文档

中文停用词见
停用词

import jieba
import pandas as pd
import re
from sklearn.feature_extraction.text import CountVectorizer#词袋
from sklearn.feature_extraction.text import TfidfTransformer#tfidffile=pd.read_excel("文档.xls")# 定义删除除字母,数字,汉字以外的所有符号的函数
def remove_punctuation(line):line = str(line)if line.strip() == '':return ''rule = re.compile(u"[^a-zA-Z0-9\u4E00-\u9FA5]")line = rule.sub('', line)return line#停用词
def stopwordslist(filepath):try:stopwords = [line.strip() for line in open(filepath, 'r', encoding='utf-8').readlines()]except:stopwords = [line.strip() for line in open(filepath, 'r', encoding='gbk').readlines()]return stopwords# 加载停用词
stopwords = stopwordslist("停用词.txt")#去除标点符号
file['clean_review']=file['文档'].apply(remove_punctuation)
# 去除停用词
file['cut_review'] = file['clean_review'].apply(lambda x: " ".join([w for w in list(jieba.cut(x)) if w not in stopwords]))#词袋计数
count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(file['cut_review'])#tf-idf
tfidf_transformer = TfidfTransformer()
X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)

X_train_tfidf
(0, 123) 0.08779682150216786 表示第1篇文档词袋中第123个单词的tdidf为0.087

X_train_tfidf.toarray()

词汇表模型

词袋模型可以很好的表现文本由哪些单词组成,但是却无法表达出单词之间的前后关系,于是人们借鉴了词袋模型的思想,使用生成的词汇表对原有句子按照单词逐个进行编码。TensorFlow默认支持了这种模型:

tf.contrib.learn.preprocessing.VocabularyProcessor (max_document_length,    min_frequency=0,vocabulary=None,tokenizer_fn=None)

其中各个参数的含义为:

  • max_document_length:,文档的最大长度。如果文本的长度大于最大长度,那么它会被剪切,反之则用0填充。
  • min_frequency,词频的最小值,出现次数小于最小词频则不会被收录到词表中。
  • vocabulary,CategoricalVocabulary 对象。
  • tokenizer_fn,分词函数。

假设有如下句子需要处理:

x_text =['i love you','me too'
]

基于以上句子生成词汇表,并对’i me too’这句话进行编码:

 vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)vocab_processor.fit(x_text)print next(vocab_processor.transform(['i me too'])).tolist()x = np.array(list(vocab_processor.fit_transform(x_text)))print x

运行程序,x_text使用词汇表编码后的数据为:
[[1 2 3 0]
[4 5 0 0]]
'i me too’这句话编码的结果为:
[1, 4, 5, 0]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/46535.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

上海理工大学24计算机考研考情分析!初复试分值比55:45,复试逆袭人数不算多!

上海理工大学&#xff08;University of Shanghai for Science and Technology&#xff09;&#xff0c;位于上海市&#xff0c;是一所以工学为主&#xff0c;工学、理学、经济学、管理学、文学、法学、艺术学等多学科协调发展的应用研究型大学&#xff1b;是上海市属重点建设大…

Linux系统及常用指令

目录 1、什么是Linux系统 2、为什么要用Linux系统 3、Linux系统的种类 4、如何安装Linux系统 5、常见的适配器种类 6、学习第一个Linux指令 7、安装ssh客户端软件 8、Linux系统的目录结构 9、Linux的常用命令 9.1 目录切换命令 9.2 查看目录下的内容 9.3 查看当前…

vue项目build以后整合到springboot项目里面---------gxl

很多时候我们需要用到vue的组件&#xff0c;但是全栈的背景下懒得去搞前后端分离&#xff0c;很多权限校验后台都写好了&#xff0c;没必要再去做接口或者前端写一遍了&#xff0c;因此我们需要把打包后的项目整合到项目里面。 整合也很简单&#xff0c;照常vue项目开发&#…

UE4-蓝图(可视化编程)学习

一.开关门交互实现 1.需要用到的模板和内容包 2.给门添加碰撞 进入第三人称模板场景&#xff0c;找到门的模型&#xff0c;并将门的模型添加到我们的场景中&#xff1a; 此时我们运行游戏&#xff0c;会发现我们的角色可以穿过我们门的模型&#xff0c;说明我们没有给门添加碰…

水利行业的智慧转型之路:分析智慧水利的核心要素与优势,展望其在提升水资源利用效率、保障水安全方面的广阔前景

目录 引言 一、智慧水利的核心要素 1. 物联网技术 2. 大数据与云计算 3. 人工智能与机器学习 4. 移动互联网与GIS技术 5. 标准化与信息安全 二、智慧水利的优势 1. 提高水资源利用效率 2. 增强水灾害防御能力 3. 提升水环境治理水平 4. 促进水利服务智能化 三、展望…

Grafana :利用Explore方式实现多条件查询

背景 日志统一推送到Grafana上管理。所以&#xff0c;有了在Grafana上进行日志搜索的需求&#xff0c;而进行日志搜索通常需要多条件组合。 解决方案 通过Grafana的Explore的方式实现多条件查询。 直接看操作步骤&#xff1a; 在主页搜索框中输入“Explore” 进入这个界面…

Elasticsearch:评估搜索相关性 - 第 1 部分

作者&#xff1a;来自 Elastic Thanos Papaoikonomou, Thomas Veasey 这是一系列博客文章中的第一篇&#xff0c;讨论如何在更好地理解 BEIR 基准的背景下考虑评估你自己的搜索系统。我们将介绍具体的技巧和技术&#xff0c;以便在更好地理解 BEIR 的背景下改进你的搜索评估流程…

静态网站怎么更新数据

今天看到个问题 我不是行业从业者&#xff0c;但目前遇到一个问题 我公司网站为纯静态&#xff0c;除了直接从html里修改文字外能不能这样 建立一个xml或者txt文档&#xff0c;其中有很多信息&#xff0c;例如网站名称&#xff0c;电话&#xff0c;备案号等&#xff0c;一行一行…

Java 网络编程(TCP编程 和 UDP编程)

1. Java 网络编程&#xff08;TCP编程 和 UDP编程&#xff09; 文章目录 1. Java 网络编程&#xff08;TCP编程 和 UDP编程&#xff09;2. 网络编程的概念3. IP 地址3.1 IP地址相关的&#xff1a;域名与DNS 4. 端口号&#xff08;port&#xff09;5. 通信协议5.1 通信协议相关的…

40.简易频率计(基于等精度测量法)(3)

&#xff08;1&#xff09;BCD8421码&#xff1a;十进制数字转换成BCD8421码的方法 补零&#xff1a;你需要显示多少位数字&#xff0c;就在前面补上四倍的位宽。比如你要显示一个十进制8位的数字&#xff0c;就在前面补上8*432个零。判断&#xff1a;判断补零部分显示的十进制…

叉车指纹一键启动/熄火车辆,“锁”住叉车安全

在现代工业领域&#xff0c;叉车作为重要的物流搬运工具&#xff0c;其安全性和便捷性一直是人们关注的焦点。为此&#xff0c;我们引入了一项技术——叉车指纹一键启动/熄火系统&#xff0c;真正实现了叉车安全的“锁定”。 这项技术不仅仅是简单的启动或关闭车辆的手段&#…

Axure RP移动端医院在线挂号app问诊原型图模板

医疗在线挂号问诊Axure RP原型图医院APP原形模板&#xff0c;是一款原创的医疗类APP&#xff0c;设计尺寸采用iPhone13&#xff08;375*812px&#xff09;&#xff0c;原型图上加入了仿真手机壳&#xff0c;使得预览效果更加逼真。 本套原型图主要功能有医疗常识科普、医院挂号…

云监控(华为) | 实训学习day3(10)

实现数据的增删改查 SpringBoot框架模式 向送外卖一样理解 写程序 1、准备食材(java bean) 2、菜谱(pojo接口->预制->sql 语句) 3、service处理 4、controller 派送 5、用户请求->页面 一、Spring Boot实现增加 第一步&#xff1a;食材(表),用户增加,这里还是用户…

【Android studio环境搭建】Android studio连接夜神模拟器

Android studio连接夜神模拟器 一、 步骤 1.下载好Android Studio和夜神模拟器, 2.打开夜神模拟器&#xff0c;找到其安装目录下的 nox_adb.exe文件 3.右键进入cmd命令打开&#xff0c;管理员权限执行下面命令 PS D:\Program Files\Nox\bin> .\nox_adb.exe connect 127.…

【论文解读】VoxelNeXt: Fully Sparse VoxelNet for 3D Object Detection and Tracking

VoxelNeXt 摘要引言方法Sparse CNN Backbone AdaptationSparse Prediction Head 3D Tracking实验结论 摘要 3D物体检测器通常依赖于手工制作的方法&#xff0c;例如锚点或中心&#xff0c;并将经过充分学习的2D框架转换为3D。因此&#xff0c;稀疏体素特征需要通过密集预测头进…

免费的数字孪生平台助力产业创新,让新质生产力概念有据可依

关于新质生产力的概念&#xff0c;在如今传统企业现代化发展中被反复提及。 那到底什么是新质生产力&#xff1f;它与哪些行业存在联系&#xff0c;我们又该使用什么工具来加快新质生产力的发展呢&#xff1f;今天我将介绍一款为发展新质生产力而量身定做的数字孪生工具。 新…

OpenCv 如何在 Java 中使用

Java 项目引入 OpenCv 环境准备OpenCv介绍下载Maven 安装动态链接库 完成 环境准备 JDK 8 OpenCv 4.0.0 Maven 3.9 Windows 11 OpenCv 介绍 OpenCV&#xff08;开源计算机视觉库&#xff09;是一个功能强大的计算机视觉和机器学习库。它提供了广泛的工具和算法&#xff0c;用…

MYSQL中的库表建立基础操作

任务&#xff1a;新建产品库mydb6_product&#xff0c; 新建3张表如下: 一&#xff0c; employees表 &#xff08;1&#xff09;:id&#xff0c;整型&#xff0c;主键 &#xff08;2&#xff09;:name&#xff0c;字符串&#xff0c;最大长度50&#xff0c;不能为空 &#xff…

【Django】网上蛋糕商城后台-类目管理

1.类目管理列表实现 当管理员进入后台管理后&#xff0c;点击类目管理&#xff0c;向服务器发出请求 path(admin/type_list/,viewsAdmin.type_list), # 处理商品分类管理列表请求 def type_list(request):# 读取分页页码try:ym request.GET["ym"]except:ym 1# 查…

html2canvas + jspdf 纯前端HTML导出PDF的实现与问题

前言 这几天接到一个需求&#xff0c;富文本编辑器的内容不仅要展示出来&#xff0c;还要实现展示的内容导出pdf文件。一开始导出pdf的功能是由后端来做的&#xff0c;然后发现对于宽度太大的图片&#xff0c;导出的pdf文件里部分图片内容被遮盖了&#xff0c;但在前端是正常显…