【C语言】结构体,枚举,联合超详解!!!

目录

结构体

结构体声明

结构体成员的访问

结构体自引用 

结构体变量定义,初始化,传参 

结构体内存对齐 

位段

枚举

联合(共用体)


结构体

结构体声明

1. 概念

1. 结构体是一些值的集合,这些值称为成员变量。

2. 结构体的每个成员可以是不同类型的变量。

3. 数组:一组相同类型元素的集合,结构体:一组不一定相同类型元素的集合。

4. 结构体的成员可以是标量、数组、指针,甚至是其他结构体。

2. 声明

例子

假设我们要用结构体表示一个学生类型

struct Stu
{   char name[20]; //名字int age; //年龄char sex[5]; //性别
};

我们还可以这样写,这样表示直接用这个结构体类型创建s1和s2变量。

struct Stu
{   char name[20]; int age; char sex[5]; 
}s1, s2;

也可以这样创建变量。

struct Stu s3;

2. 特殊的声明 

在声明结构的时候,可以不完全的声明。

比如:匿名结构体类型。

接下来我这样写。

struct
{int a;char b;float c;
}x;struct
{int a;char b;float c;
}*p;

请问我可以写 p = &x; 吗?答案是不行。虽然成员是一样的,但编译器会把上面的两个声明当成完全不同的两个类型。


结构体成员的访问

1. 结构体变量访问成员

结构体变量的成员是通过点操作符(.)访问的。点操作符接受两个操作数。

比如:

struct Stu
{char name[20];int age;
};struct Stu s;
strcpy(s.name, "zhangsan");//使用.访问name成员
s.age = 20;//使用.访问age成员

2. 结构体指针访问成员 

有时候我们得到的不是一个结构体变量,而是指向一个结构体的指针,那该如何访问成员?

struct Stu
{char name[20];int age;
};void print(struct Stu* ps)
{printf("name = %s   age = %d\n", (*ps).name, (*ps).age);//使用结构体指针访问指向对象的成员printf("name = %s   age = %d\n", ps->name, ps->age);
}int main()
{struct Stu s = {"zhangsan", 20};print(&s);//结构体地址传参return 0;
}

结构体自引用 

1. 在结构中包含一个类型为该结构本身的成员是否可以呢?

比如这样写可以吗?

struct Node
{int data;struct Node next;
};

答案是不行,因为无法计算struct Node有多大,无限套娃。

正确写法:

//结构体的自引用
struct Node
{int data;struct Node* next;
};

2. 搭配 typedef 的写法 

错误写法:

typedef struct
{int data;Node* next;
}Node;

正确写法:

typedef struct Node
{int data;struct Node* next;
}Node;

这里的执行逻辑是我们先对这个类型重命名之后产生Node,也就是说重命名之前的写法必须是正确的。


结构体变量定义,初始化,传参 

1. 定义,初始化

有了结构体类型,那如何定义变量呢?如何初始化呢?

有两个地方可以定义变量。定义变量的同时也能初始化。

struct Point
{int x;int y;
}p1 = {1, 2}; //第一种方法,这里创建的变量是全局变量,同时也能初始化               int main()
{struct Point p2 = {3, 4}; //第二种方法,这里创建的变量是局部变量,同时初始化struct Point p3 = {.y=5, .x=6}; //这里用了结构成员访问符,可以不按顺序初始化return 0;
}

2. 嵌套初始化 

我们想一个问题,结构体里面有没有可能出现结构体类型的数据呢?答案是有可能的。

比如:

struct Point
{int x;int y;
};struct PP
{double d;struct Point pt;int a;
}

那么这个怎么初始化呢?

很简单,嵌套的那个结构体自己加一对大括号就好了。

int main()
{struct PP p = {3.14, {1, 2}, 8};printf("%d\n", p.pt.x); //想要访问嵌套的结构体只需用多一次 . 即可    return 0;
}

3. 结构体传参

下方代码中传结构体与传结构体地址哪个好一些?

struct S
{int data[1000];int num;
};//结构体传参
void print1(struct S s) { printf("%d\n", s.num); }//结构体地址传参
void print2(struct S* ps) { printf("%d\n", ps->num); }int main()
{struct S s = {{1,2,3,4}, 1000};print1(s);  //传结构体print2(&s); //传结构体地址return 0;
}

答案:传结构体地址。

原因:函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。 如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。


结构体内存对齐 

1. 计算结构体的大小

想了解内存对齐我们得先思考下面这个例子

struct S1
{char c1; //1int i; //4char c2; //1
};struct S2{char c1; //1char c2; //1int i; //4};int main()
{printf("%d\n", sizeof(struct S1));printf("%d\n", sizeof(struct S2));return 0;
}

经过分析我们认为都是6,因为1+1+4嘛,然而结果是S1大小为12,S2大小为8。为什么?

因为这里面就涉及到结构体内存对齐了。

2. 结构体的对齐规则

1. 结构体的第一个成员永远放在与结构体变量起始位置偏移量为0的位置。

2. 从第二个成员开始,往后每个成员都要对齐到对齐数的整数倍处。对齐数 = 编译器默认的一个对齐数与该成员大小的较小值。VS中默认的值为8。Linux中没有默认对齐数,对齐数就是成员自身的大小。

3. 结构体总大小为最大对齐数的整数倍。最大对齐数是所有成员的对齐数的最大值。

4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,

结构体的总大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

3. 练习 

struct S3
{double d;char c;int i;
};printf("%d\n", sizeof(struct S3));

答:16

解析:1. d的对齐数是8,但因为d是第一个成员所以直接放在偏移量为0的位置,d是8个字节占用偏移量0到7的位置。

2. c的对齐数是1,此时偏移量为8是1(对齐数)的整数倍,c是1个字节占用偏移量为8的位置。

3. i的对齐数是4,此时偏移量为9不是4(对齐数)的整数倍,一直往后到偏移量12的位置,此时是4(对齐数)的整数倍,i是4个字节占用12到15的位置。

4. 偏移量从0到15,所以总大小为16,16是8(最大对齐数)的整数倍。

.

下面这个结构体嵌套了结构体,这大小该如何计算呢?

struct S4
{char c1;struct S3 s3;double d;
};printf("%d\n", sizeof(struct S4));

答:32

解析:1. c1对齐数是1,因为是第一个成员所以放在偏移量为0的位置,c1是一个字节所以占用一个位置。

2. s3是结构体所以s3的对齐数是自己成员的最大对齐数是8,此时的偏移量是1不是对齐数的整数倍所以一直移到偏移量为8的位置,s3是16个字节占用8到23的位置。

3. d的对齐数是8,此时偏移量为24是对齐数的整数倍,d是8个字节占用24到31的位置。

4. 偏移量从0到31一个32个位置是所有最大对齐数的整数倍。

4. 为什么存在内存对齐? 

1. 平台原因(移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

2. 性能原因: 数据结构(尤其是栈)应该尽可能地在自然边界上对齐。

原因在于为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。 总体来说: 结构体的内存对齐是拿空间来换取时间的做法。

.

那我们如何设计结构体既能满足对齐又能节省空间呢?

答案:让占用空间小的成员尽量集中在一起。

比如下面代码,S2就比S1省空间。

struct S1
{char c1;int i;char c2;
};struct S2
{char c1;char c2;int i;
};

5. 修改默认对齐数

 #pragma pack(8)//设置默认对齐数为8struct S1{char c1;int i;char c2;};#pragma pack()//取消设置的默认对齐数,还原为默认#pragma pack(1)//设置默认对齐数为1struct S2{char c1;int i;char c2;};#pragma pack()//取消设置的默认对齐数,还原为默认

结论:结构体在对齐方式不合适的时候,我们可以自己更改默认对齐数。


位段

1. 什么是位段

位段的成员名后边有一个冒号和一个数字。

比如:A就是一个位段类型。

struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};

那位段A的大小是多少?

printf("%d\n", sizeof(struct A));

答案:8字节

因为位段的位是二进制位,意味着_a占两个比特位,_b占5个比特位,_c占10个比特位,_d占30个比特位,一个是47个比特位,一个int32字节不够,所有给了两个int。

.

那有同学要问了,为什么要弄位段呢?

其实有时候我们设计结构体成员的时候,它的取值非常有限,可能只会用到几个比特位,剩下的比特位给其他成员用,这样可以节省空间。

2. 位段的内存分配 

1. 位段的成员可以是 int,unsigned int,signed int 或者是char (属于整形家族)类型。

2. 位段的空间上是按照需要以4个字节(int)或者1个字节(char)的方式来开辟的。

3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

.

这里的不确定因素包括:

1. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。

2. 当一个位段成员占用比特位比较大需要开辟新空间时,前面空间剩余的比特位是使用还是舍弃不确定。

3. int 位段被当成有符号数还是无符号数是不确定的。

4. 位段中最大位的数目不能确定(16位机器最大16,32位机器最大32)。

不确定就会导致不同的平台有不同的实现。

3. VS环境位段的内存分配 

这个62 03 04是如何来的呢?请听我细细道来。

第一步,根据每个成员后面的数字分配比特位,在VS中位段的内存分配是从右到左的。并且,当需要开辟新空间时,前面剩余的比特位不使用。

第二步,根据上面代码将数值转成二进制初始化,s.a=10,比特位是1010,但a只有三个比特位,所以高位的1会舍去。

第三步,转成十六进制,四个比特位转一个十六进制数。

4. 位段的应用 


枚举

1. 枚举类型的定义

enum Day//星期
{Mon,Tues,Wed,Thur,Fri,Sat,Sun
};enum Sex//性别
{MALE,FEMALE,SECRET
};enum Color//颜色
{RED,GREEN,BLUE
};

1. 以上定义的 enum Day,enum Sex,enum Color 都是枚举类型。

2. { }中的内容是枚举类型的可能取值,也叫枚举常量。

3. 这些可能取值都是有值的,默认从0开始,依次递增1,在声明枚举类型的时候也可以赋初值。比如:

enum Color
{RED=1,GREEN=8,BLUE
};

这个BLUE的值是在前面的基础上递增1,也就是9。

2. 枚举的使用

只能拿枚举常量给枚举变量赋值,才不会出现类型的差异。

enum Color
{RED=1,GREEN=2,BLUE=4
};enum Color clr = GREEN;

3.  枚举的优点

我们可以使用 #define 定义常量,为什么非要使用枚举?

枚举的优点:

1. 增加代码的可读性和可维护性。

2. 和#define定义的标识符比较枚举有类型检查,更加严谨。

3. 便于调试。

4. 使用方便,一次可以定义多个常量。


联合(共用体)

1. 联合类型的定义

1. 联合是一种特殊的自定义类型。

2. 这种类型定义的变量包含一系列的成员,特征是这些成员公用同一块空间,所以联合也叫共用体。

例子:

//联合类型的声明
union Un
{char c;int i;
};//联合变量的定义
union Un un;

2. 联合的特点 

1. 联合的成员是共用同一块内存空间的。

2. 一个联合变量的大小,至少是最大成员的大小,因为联合至少得有能力保存最大的那个成员。

例子:

我们可以看出,这个联合类型大小为4且成员的地址都相同。

如图,i 和 c 共用同一块空间。

.

所以当我们修改 c 的时候,i 也会跟着变。

3.  面试题:判断当前计算机的大小端存储

之前我们学到用指针来判断,这次我们利用联合判断。

思路:i = 1 有两种存储字节序,一种是 00 00 00 01,一种是 01 00 00 00,所以我们就对比第一个字节即可。

int main()
{union {char c;int i;}un = {.i = 1};//判断第一个字节是1还是0if ((int)un.c) printf("small\n");else printf("big\n");return 0;
}

4.  联合大小的计算

1. 联合的大小至少是最大成员的大小。

2. 当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。

例子1:

union Un1
{char c[5];int i;
};

答:Un1大小是8字节。

解析:首先c是char数组大小为5,i大小为4,那么Un1大小至少为5,然后我们看5是不是最大对齐数的整数倍,c的对齐数是1因为c的元素类型是char,i的对齐数是4,所以总大小要从5提升到8。

.

例子2

union Un2
{short c[7];int i;
};

答:16字节。

解析:第一步,c的大小为14,i的大小为4,那么可以确定Un2的大小至少为14。第二步,判断14是不是最大对齐数的整数倍,很明显14不是4的整数倍,所以14增加到16。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/46351.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

长难句打卡7.15

The trend was naturally most obvious in those areas of science based especially on a mathematical or laboratory training, and can be illustrated in terms of the development of geology in the United Kingdom 这一趋势自然在以数学或实验室训练为基础的科学领域里…

Unlink

Unlink 原理 我们在利用 unlink 所造成的漏洞时,其实就是对 chunk 进行内存布局,然后借助 unlink 操作来达成修改指针的效果。简单回顾一下 unlink 的目的与过程,其目的是把一个双向链表中的空闲块拿出来(例如 free 时和目前物理…

Leetcode二分搜索法浅析

文章目录 1.二分搜索法1.1什么是二分搜索法?1.2解法思路 1.二分搜索法 题目原文: 给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返…

从PyTorch官方的一篇教程说开去(1 - 初心)

原文在此,喜欢读原汁原味的可以自行去跟,这是一个非常经典和有学习意义的例子,在此向老爷子们致敬 - https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html 开源文化好是好,但是“公地的悲哀”这点避不开…

高效运维:构建全面监控与自动化管理体系

在当今的数字化时代,运维管理已成为企业IT架构中不可或缺的一环。它不仅关乎系统的稳定运行,更直接影响到业务的响应速度、故障处理时间以及客户满意度等多个方面。因此,构建一套全面监控与自动化管理体系,对于提升企业运维效率、…

无人机之多旋翼与固定翼的区别

多旋翼无人机和固定翼无人机是无人机技术中的两种主要形式,各自有独特的优势和应用场景。 一、飞行原理与结构 多旋翼无人机:依靠多个旋翼产生升力来平衡飞行器的重力,通过改变每个旋翼的转速控制飞行器的姿态和平稳,使其能够垂…

PDF文件无法编辑?3步快速移除PDF编辑限制

正常来说,我们通过编辑器打开pdf文件后,就可以进行编辑了。如果遇到了打开pdf却不能编辑的情况,那有可能是因为密码或是扫描件的原因。小编整理了一些pdf文件无法编辑,以及pdf文件无法编辑时我们要如何处理的方法。下面就随小编一起来…

[word] word如何编写公式? #微信#知识分享

word如何编写公式? word如何编写公式?Word中数学公式是经常会使用到的,若是要在文档中录入一些复杂的公式,要怎么做呢?接下来小编就来给大家讲一讲具体操作,一起看过来吧! 方法一:…

stm32学习:(寄存器3)系统架构

时钟系统 时钟树 在STM32中有3种不同的时钟源用来驱动系统时钟(SYSCLK): HSI振荡器时钟(High Speed Internal oscillator,高速内部时钟)HSE振荡器时钟(High Speed External(Oscillator / Clock&#xff…

Ruby爬虫技术:深度解析Zhihu网页结构

在互联网时代,数据的价值日益凸显,尤其是在社交媒体和问答平台如Zhihu(知乎)上,用户生成的内容蕴含着丰富的信息和洞察。本文将深入探讨如何使用Ruby爬虫技术来解析Zhihu的网页结构,并获取有价值的数据。 …

啊?原来你也看环法赛!—VELO Angel Glide坐垫,与你共攀环法荣耀之路!

当七月的热浪席卷赛道,环法自行车赛(Tour de France)的战鼓再次响起,挑战与梦想交织的火花在每一寸赛道上绽放。自1903年首届赛事以来,环法已成为全球最具声望的自行车赛事,吸引着无数顶尖骑手和观众的目光…

c语言程序环境和预处理

test.c(源文件) --> 编译器 --> test.obj(目标文件,在debug里) 链接库和多个目标文件 经过 链接器的处理,最终生成可执行程序.exe 编译阶段 预处理/预编译阶段 :1.头文件的包含 2.define定义符号的替换,并删除定义的符号 3.删除注释 这…

医学影像归档与通讯系统源码,C#PACS源码,涵盖放射、超声、内镜、病理、核医学

医学影像归档与通讯系统(PACS)系统,是一套适用于从单一影像设备到放射科室、到全院级别等各种应用规模的医学影像归档与通讯系统。PACS集患者登记、图像采集、存档与调阅、报告与打印、查询、统计、刻录等功能为一体,有效地实现了…

【保卫花果山】游戏

游戏介绍 拯救花果山是一款玩家能够进行趣味闯关的休闲类游戏。拯救花果山中玩家需要保护花果山的猴子,利用各种道具来防御妖魔鬼怪的入侵,游戏中玩家需要面对的场景非常的多样,要找到各种应对敌人的方法。拯救花果山里玩家可以不断的进行闯…

【开源 Mac 工具推荐之 2】洛雪音乐(lx-music-desktop):免费良心的音乐平台

旧版文章:【macOS免费软件推荐】第6期:洛雪音乐 Note:本文在旧版文章的基础上,新更新展示了一些洛雪音乐的新功能,并且描述更为详细。 简介 洛雪音乐(GitHub 名:lx-music-desktop )…

JavaScript学习笔记(九)

56、JavaScript 类 56.1 JavaScript 类的语法 请使用关键字 class 创建一个类。 请始终添加一个名为 constructor() 的方法。 JavaScript 类不是对象。 它是 JavaScript 对象的模板。 语法: class ClassName {constructor() { ... } }示例:例子创…

C#实现数据采集系统-ModbusTCP查询报文分析和实现、通信实现、测试项目

ModbusTcp的应用 Modbus是工业通信协议中广泛使用的协议,大部分设备都支持。Modbus TCP是一种基于TCP/IP网络的工业通信协议,它是Modbus协议的一种变种,专门设计用于在网络上传输数据。 Modbus TCP/IP保留了Modbus串行协议的数据结构和功能特性,同时利用了TCP/IP网络的高…

什么是 std::ios::sync_with_stdio(false)

介绍 std::ios::sync_with_stdio(false) 是 C 中的一个配置设置,用于控制标准 I/O 流(如 std::cin, std::cout)的行为。这个设置主要用于优化输入输出操作的性能,尤其是在处理大量数据时。 在 C 中,标准流库&#xf…

stm32:CAN通讯

目录 介绍 协议层 CAN的 帧/报文 种类 数据帧 远程帧(遥控帧) 错误帧 过载帧 帧间隔 总线仲裁 stm32的CAN外设 工作模式 测试模式 功能框图 时序 标准时序 例子 环回静默模式测试 寄存器代码 HAL版本 介绍 一种功能丰富的车用总线标…

24暑假算法刷题 | Day15 | LeetCode 110. 平衡二叉树,257. 二叉树的所有路径,404. 左叶子之和,222. 完全二叉树的节点个数

目录 110. 平衡二叉树题目描述题解 257. 二叉树的所有路径题目描述题解 404. 左叶子之和题目描述题解 222. 完全二叉树的节点个数题目描述题解 110. 平衡二叉树 点此跳转题目链接 题目描述 给定一个二叉树,判断它是否是平衡二叉树 平衡二叉树 是指该树所有节点的…