模块四:前缀和——DP35 【模板】二维前缀和

文章目录

  • 题目描述
  • 算法原理
    • 解法一:暴力+模拟(时间复杂度为O(n*m*q))
    • 解法二:二维前缀和(时间复杂度为O(m*n)+O(q))
  • 代码实现
    • 解法二:前缀和(C++)
    • Java

题目描述

题目链接:DP35 【模板】二维前缀和
在这里插入图片描述
PS:读入数据可能很大,请注意读写时间。

算法原理

解法一:暴力+模拟(时间复杂度为O(nmq))

遍历整个矩阵,每次查询都要遍历,总共q次。

解法二:二维前缀和(时间复杂度为O(m*n)+O(q))

类⽐于⼀维数组的形式,如果我们能处理出来从 [0, 0] 位置到 [i, j] 位置这⽚区域内所有元素的累加和,就可以在 O(1) 的时间内,搞定矩阵内任意区域内所有元素的累加和。因此我们接下来仅需完成两步即可:

  1. 搞出来前缀和矩阵:这⾥就要⽤到⼀维数组⾥⾯的拓展知识,我们要在矩阵的最上⾯和最左边添加上⼀⾏和⼀列0,这样我们就可以省去⾮常多的边界条件的处理(xdm可以⾃⾏尝试直接搞出来前缀和矩阵,边界条件的处理会让你崩溃的)。处理后的矩阵就像这样:
    在这里插入图片描述
    这样,我们填写前缀和矩阵数组的时候,下标直接从 1 开始,能⼤胆使⽤ i - 1 , j - 1 位置的值。
    注意 dp 表与原数组 matrix 内的元素的映射关系:
    从 dp 表到 matrix 矩阵,横纵坐标减⼀;
    从 matrix 矩阵到 dp 表,横纵坐标加一。

前缀和矩阵中 sum[i][j] 的含义,以及如何递推⼆维前缀和⽅程
sum[i][j] 的含义:sum[i][j] 表⽰,从 [0, 0] 位置到 [i, j] 位置这段区域内,所有元素的累加和。对应下图的红⾊区域
在这里插入图片描述
递推⽅程:
其实这个递推⽅程⾮常像我们⼩学做过求图形⾯积的题,我们可以将 [0, 0] 位置到 [i, j]位置这段区域分解成下⾯的部分:
在这里插入图片描述
sum[i][j] = 红 + 蓝 + 绿 + ⻩,分析⼀下这四块区域:
i.⻩⾊部分最简单,它就是数组中的 matrix[i - 1][j - 1] (注意坐标的映射关系)
ii. 单独的蓝不好求,因为它不是我们定义的状态表⽰中的区域,同理,单独的绿也是;
iii. 但是如果是红 + 蓝,正好是我们 dp 数组中 sum[i - 1][j] 的值,美滋滋;
iv. 同理,如果是红 + 绿,正好是我们 dp 数组中 sum[i][j - 1] 的值;
v. 如果把上⾯求的三个值加起来,那就是⻩ + 红 + 蓝 + 红 + 绿,发现多算了⼀部分红的⾯积,因此再单独减去红的⾯积即可;
vi. 红的⾯积正好也是符合 dp 数组的定义的,即 sum[i - 1][j - 1]
综上所述,我们的递推⽅程就是:

sum[i][j]=sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1]+matrix[i - 1][j - 1]
  1. 使⽤前缀和矩阵:题⽬的接⼝中提供的参数是原始矩阵的下标,为了避免下标映射错误,这⾥直接先把下标映射成dp 表⾥⾯对应的下标: row1++, col1++, row2++, col2++
    接下来分析如何使⽤这个前缀和矩阵,如下图(注意这⾥的 row 和 col 都处理过了,对应的正是 sum 矩阵中的下标):
    在这里插入图片描述
    对于左上⻆ (row1, col1) 、右下⻆ (row2, col2) 围成的区域,正好是红⾊的部分。因此我们要求的就是红⾊部分的⾯积,继续分析⼏个区域:
    i. ⻩⾊,能直接求出来,就是 sum[row1 - 1, col1 - 1] (为什么减⼀?因为要剔除掉 row 这⼀⾏和 col 这⼀列)
    ii. 绿⾊,直接求不好求,但是和⻩⾊拼起来,正好是 sum 表内 sum[row1 - 1][col2]的数据;
    iii. 同理,蓝⾊不好求,但是 蓝 + ⻩ = sum[row2][col1 - 1] ;
    iv. 再看看整个⾯积,好求嘛?⾮常好求,正好是 sum[row2][col2] ;
    v. 那么,红⾊就 = 整个⾯积 - ⻩ - 绿 - 蓝,但是绿蓝不好求,我们可以这样减:整个⾯积 -(绿+ ⻩ )-(蓝 + ⻩),这样相当于多减去了⼀个⻩,再加上即可
    综上所述:红 = 整个⾯积 - (绿 + ⻩)- (蓝 + ⻩)+ ⻩,从⽽可得红⾊区域内的元素总和为:
sum[row2][col2]-sum[row2][col1 - 1]-sum[row1 - 1][col2]+sum[row1 - 
1][col1 - 1]

代码实现

解法二:前缀和(C++)

#include <iostream>
#include <vector>
using namespace std;int main() {//1.读取数据int n = 0,m = 0,q = 0,x1 = 0,y1 = 0,x2 = 0,y2 = 0;//赋初值,养成好习惯cin >> n >> m >> q;vector<vector<int>> arr(n + 1,vector<int>(m + 1,0));for(int i = 1;i < n + 1;i++){for(int j = 1;j < m + 1;j++){cin >> arr[i][j];}}//2.预处理前缀和矩阵vector<vector<long long>> dp(n + 1,vector<long long>(m + 1,0));//防止溢出for(int i = 1;i < n + 1;i++){for(int j = 1;j < m + 1;j++){dp[i][j]=dp[i - 1][j] + dp[i][j - 1] + arr[i][j] - dp[i - 1][j - 1];}}//3.使用前缀和矩阵while(q--){cin >> x1 >> y1 >> x2 >> y2;cout << dp[x2][y2] - dp[x1 - 1][y2] -dp[x2][y1 -1] + dp[x1 - 1][y1 - 1] << endl;}return 0;}

Java

import java.util.Scanner;
// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main {public static void main(String[] args) {Scanner in = new Scanner(System.in);int n = in.nextInt();int m = in.nextInt();int q = in.nextInt();int[][] arr = new int[n + 1][m + 1];long[][] dp = new long[n + 1][m + 1];// 读⼊数据for (int i = 1; i <= n; i++)for (int j = 1; j <= m; j++)arr[i][j] = in.nextInt();// 处理前缀和矩阵for (int i = 1; i <= n; i++)for (int j = 1; j <= m; j++)dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1] + arr[i][j];// 使⽤前缀和矩阵while (q > 0) {int x1 = in.nextInt(), y1 = in.nextInt(), x2 = in.nextInt(), y2 = in.nextInt();System.out.println(dp[x2][y2] - dp[x1 - 1][y2] - dp[x2][y1 - 1] + dp[x1 - 1][y1 - 1]);q--;}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/4592.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

三星电脑文件夹误删了怎么办?恢复方案在此

在使用三星电脑的过程中&#xff0c;我们可能会不小心删除了某个重要的文件夹&#xff0c;其中可能包含了工作文件、家庭照片、视频或其他珍贵的数据。面对这种突发情况&#xff0c;不必过于焦虑。本文将为您提供几种有效的恢复方案&#xff0c;希望能帮助您找回误删的文件夹及…

openEuler-22.03安装 mysql8.0.32

一、下载解压 下载地址&#xff1a; MySQL :: Download MySQL Community Server (Archived Versions) tar -xvf mysql-8.0.32-1.el7.x86_64.rpm-bundle.tar -C /opt/mysql-8.0.32 二、安装 最开始安装一直报错 缺少 libcrypto.so.10库文件,安装openssl可以解决 wget http://…

Java客户端如何直接调用es的API

Java客户端如何直接调用es的API 一. 问题二. withJson 前言 这是我在这个网站整理的笔记,有错误的地方请指出&#xff0c;关注我&#xff0c;接下来还会持续更新。 作者&#xff1a;神的孩子都在歌唱 一. 问题 今天做项目的时候&#xff0c;想要直接通过java客户端调用es的api…

揭秘工业大模型:从人工智能小白到技术先锋

工业大模型的五个基本问题 信息化时代&#xff0c;数字化转型成为企业提升营运效率、应对经营风险和提升核心竞争力的重要途径。在此过程中&#xff0c;数据作为一种客观存在的资源&#xff0c;所产生的价值日益凸显。党的十九届四中全会从国家治理体系和治理能力现代化的高度将…

【万字长文】看完这篇yolov4详解,那算是真会了

前言 目标检测作为计算机视觉领域的一个核心任务&#xff0c;其目的是识别出图像中所有感兴趣的目标&#xff0c;并给出它们的类别和位置。YOLO&#xff08;You Only Look Once&#xff09;系列模型因其检测速度快、性能优异而成为该领域的明星。随着YOLOv4的推出&#xff0c;…

双塔模型在召回和粗排的区别

答案参考&#xff1a;推荐系统中&#xff0c;双塔模型用于粗排和用于召回的区别有哪些? - 知乎 召回和粗排在不同阶段面临样本不一样&#xff0c;对双塔来说样本分布差异会使召回和粗排采取不一样的方式。召回打分空间是全部item空间&#xff0c;曝光只有很少一部分&#xff0…

【机器学习】集成学习---Bagging之随机森林(RF)

【机器学习】集成学习---Bagging之随机森林&#xff08;RF&#xff09; 一、引言1. 简要介绍集成学习的概念及其在机器学习领域的重要性。2. 引出随机森林作为Bagging算法的一个典型应用。 二、随机森林原理1. Bagging算法的基本思想2. 随机森林的构造3. 随机森林的工作机制 三…

ClickHouse 如何实现数据一致性

文章目录 ReplacingMegreTree 引擎数据一致性实现方式1.ReplacingMegreTree 引擎2.ReplacingMegreTree 引擎 手动合并3.ReplacingMegreTree 引擎 FINAL 查询4.ReplacingMegreTree 引擎 标记 GroupBy5.允许偏差 前言&#xff1a;在大数据中&#xff0c;基本上所有组件都要求…

Docker创建镜像之--------------基于Dockerfile创建

目录 一、在编写 Dockerfile 时&#xff0c;有严格的格式需要遵循 二、Dockerfile 操作常用的指令 2.1ENTRYPOINT和CMD共存的情形 2.2ENTRYPOINT和CMD的区别 2.3ADD 与COPY的区别 三、Dockerfile案例 3.1构建apache镜像 3.1.1 创建镜像目录方便管理 3.1.2创建编写dock…

函数递归与迭代

目录 1.递归 1.1递归的思想 1.2递归的限制条件 2.递归与迭代 1.递归 函数递归是什么&#xff1f; 递归是学习C语⾔函数绕不开的⼀个话题&#xff0c;那什么是递归呢? 递归其实是⼀种解决问题的⽅法&#xff0c;在C语⾔中&#xff0c;递归就是函数⾃⼰调⽤⾃⼰。 写⼀个史…

大模型对数字营销的驱动赋能

一、大模型驱动的营销数智化个信未来发展趋势 1.模型算法能力全面升级 大模型凭借智能化的用户洞察&#xff0c;个性化的需求预测、系统化的数据分析、效率化的营销决策以及实实化的全域检测支持&#xff0c;为营销行业更加准确地把握市场动态和消费者需求提供了强大支持。可以…

Spring Boot 如何实现缓存预热

Spring Boot 实现缓存预热 1、使用启动监听事件实现缓存预热。2、使用 PostConstruct 注解实现缓存预热。3、使用 CommandLineRunner 或 ApplicationRunner 实现缓存预热。4、通过实现 InitializingBean 接口&#xff0c;并重写 afterPropertiesSet 方法实现缓存预热。 1、使用…

数据结构和算法:贪心

贪心算法 贪心算法是一种常见的解决优化问题的算法&#xff0c;其基本思想是在问题的每个决策阶段&#xff0c;都选择当前看起来最优的选择&#xff0c;即贪心地做出局部最优的决策&#xff0c;以期获得全局最优解。 贪心算法和动态规划都常用于解决优化问题。它们之间存在一…

TCP/IP协议族中的TCP(二):解析其关键特性与机制

⭐小白苦学IT的博客主页⭐ ⭐初学者必看&#xff1a;Linux操作系统入门⭐ ⭐代码仓库&#xff1a;Linux代码仓库⭐ ❤关注我一起讨论和学习Linux系统 滑动窗口 在前面我们讨论了确认应答策略, 对每一个发送的数据段, 都要给一个ACK确认应答. 收到ACK后再发送下一个数据段.这样…

力扣HOT100 - 98. 验证二叉搜索树

解题思路&#xff1a; class Solution {public boolean isValidBST(TreeNode root) {return recur(root,Long.MIN_VALUE,Long.MAX_VALUE);}public boolean recur(TreeNode root,long lower,long upper){if(rootnull) return true;if(root.val<lower||root.val>upper) re…

Ubuntu上的screenfetch

2024年4月28日&#xff0c;周日下午 这些文本是由一个叫做 “screenfetch” 的命令生成的&#xff0c;它会显示一些系统和用户信息&#xff0c;包括操作系统、内核版本、系统运行时间、安装的软件包数量、使用的Shell、分辨率、桌面环境、窗口管理器、主题、图标主题、字体、CP…

Matlab进阶绘图第51期—带填充等高线的三维特征渲染散点图

带填充等高线的三维特征渲染散点图是填充等高线图与特征渲染三维散点图的组合。 其中&#xff0c;填充等高线图与特征渲染的三维散点图的颜色用于表示同一个特征。 由于填充等高线图无遮挡但不直观&#xff0c;特征渲染的三维散点图直观但有遮挡&#xff0c;而将二者组合&…

MySQL数据库进阶篇二(优化、视图/存储过程/存储函数/触发器)

目录 一、SQL优化1.1、插入数据1.2、主键优化1.3、order by优化1.4、group by优化1.5、limit优化1.6、count优化1.7、update优化 二、视图/存储过程/存储函数/触发器2.1、视图2.2、存储过程2.3、存储函数2.4、触发器 一、SQL优化 分为&#xff1a;插入数据优化&#xff0c;主键…

一文了解——企业网站为什么需要安装SSL证书 !

企业网站安装SSL证书主要是出于以下几个关键原因&#xff1a; 1. 数据加密&#xff1a;SSL证书能确保网站与用户浏览器之间的数据传输是加密的&#xff0c;保护敏感信息&#xff08;如登录凭据、个人信息、交易数据&#xff09;不被第三方截取或篡改&#xff0c;维护用户隐私安…

968.监控二叉树 树上最小支配集

法一: 动态规划 一个被支配的节点只会有三种状态 1.它本身有摄像头 2.他没有摄像头, 但是它的父节点有摄像头 3.他没有摄像头, 但是它的子节点有摄像头 我们 dfs(node,state) 记录在node节点时(以node为根的子树),状态为state下的所有最小摄像头 // 本身有摄像头就看左右孩子…