彻底开源,免费商用,上海AI实验室把大模型门槛打下来

终于,业内迎来了首个全链条大模型开源体系。

大模型领域,有人探索前沿技术,有人在加速落地,也有人正在推动整个社区进步。

就在近日,AI 社区迎来首个统一的全链条贯穿的大模型开源体系。

虽然社区有LLaMA等影响力较大的开源模型,但由于许可证限制无法商用。InternLM-7B 除了向学术研究完全开放之外,也支持免费商用授权,是国内首个可免费商用的具备完整工具链的多语言大模型,通过开源开放惠及更多开发者和企业,赋能产业发展。

img

WAIC 上书生・浦语的发布。

今年世界人工智能大会 WAIC 上,上个月初「高考成绩」超越 ChatGPT 的「书生」大模型来了次重大升级。

在 7 月 6 日的活动中,上海 AI 实验室与商汤联合香港中文大学、复旦大学、上海交通大学及清华大学共同发布了全新升级的「书生通用大模型体系」,包括书生・多模态、书生・浦语和书生・天际三大基础模型。其中面向 NLP 领域的书生・浦语语言大模型迎来了 104B 的高性能版和 7B 的轻量级版

相较初始模型,104B 的书生・浦语全面升级,高质量语料从 1.6 万亿 token 增至了 1.8 万亿,语境窗口长度从 2K 增至了 8K,支持语言达 20 多种,35 个评测集上超越 ChatGPT。这使得书生・浦语成为国内首个支持 8K 语境长度的千亿参数多语种大模型。

而在全面升级的同时,更值得关注的是书生・浦语在开源上的一系列动作。

此次书生・浦语将 7B 的轻量级版 InternLM-7B 正式开源,并推出首个面向大模型研发与应用的全链条开源体系,贯穿数据、预训练、微调、部署和评测五大环节。其中 InternLM-7B 是此次开源体系的核心和基座模型,五大环节紧紧围绕大模型开发展开。

上海 AI 实验室开放其整套基础模型和开发体系。大模型的研究,第一次有了一套开源的、靠谱的全链条工具。

模型 + 全套工具,开源真正实现「彻底」

此前,AWS 等国内外公司纷纷推出了基础大模型技术平台。基于大厂的能力,人们可以构建起生成式 AI 应用。相比之下,基于上海 AI 实验室的基座模型和全链条开源体系,企业、研究机构/团队既可以构建先进的应用,也可以深入开发打造各自垂直领域的大模型。

在上海 AI 实验室看来,基础大模型是进一步创新的良好开端。「书生」提供的并非单个的大模型,而是一整套基座模型体系,在全链条开源体系加持下,为学界和业界提供了坚实的底座和成长的土壤,从底层支撑起 AI 社区的成长,并且与更多的探索者共同建设「枝繁叶茂」的生态。

img

因此,就此次书生・浦语的开源而言,它是一套系统性工程,旨在推动行业进步,让一线开发者更快获取先进理念和工具。用「全方位开源开放」来形容可以说名副其实,模型、数据、工具和评测应有尽有。相比业界类似大模型平台,书生・浦语首个实现了从数据到预训练、微调,再到部署和评测全链条开源。

轻量化模型,性能业界最强

书生・浦语的 7B 轻量级版 InternLM-7B 不仅正式开源,还免费提供商用。作为书生・浦语开源体系中的基座模型,它为上海 AI 实验室未来开源更大参数的模型做了一次探索性尝试。

我们了解到,InternLM-7B 为实用场景量身定制,使用上万亿高质量语料来训练,建立起了超强知识体系。另外提供多功能工具集,使用户可以灵活自主地搭建流程。目前 GitHub star 量已经达到了 1.5K。

img

开源地址:
https://github.com/InternLM

InternLM-7B 的性能表现如何呢?上海 AI 实验室给出的答案是:在同等参数量级的情况下全面领先国内外现有开源模型

我们用数据来说话。对 InternLM-7B 的全面评测从学科综合能力、语言能力、知识储备能力、理解能力和推理能力五大维度展开,结果在包含 40 个评测集的评测中展现出卓越和均衡的性能,并实现全面超越。

img

下图展示了在几个重点评测集上,InternLM-7B 与国内外代表性 7B 开源模型(如 LLaMA-7B)的比较。可以看到,InternLM-7B 全面胜出,在 CEval、MMLU 这两个评价语言模型的广泛基准上分别取得了 53.25 和 50.8 的高分,大幅领先目前业内最优的开源模型。

img

InternLM-7B 在开放评测平台 OpenCompass 的比较结果。

书生是如何做到的?在接受机器之心专访时,上海 AI 实验室林达华教授向我们介绍了致胜之道

与以往在单项或数项基准上达到高水平的模型不同,InternLM-7B 是一个基座模型,它不是针对某个特定任务或领域,而是面向广泛的领域提供比较强大和均衡的基础能力。因而强调各方面能力的均衡是它的一大特点。

为了实现均衡且强大的能力,InternLM-7B 在训练和评估过程中使用了创新的动态调整模式:在每训练一个短的阶段之后,便对整个模型全面评估,并根据评估结果及时调整下一阶段训练数据分布。通过这套敏捷的闭环方式,模型在成长过程中始终保持能力均衡,不会因数据配比不合理而导致偏科。

同时,InternLM-7B 在微调体系上也有明显升级,使用了更有效的微调手段,保证模型的行为更加可靠。

除了以上模型技术层面的升级,InternLM-7B 还具备可编程的通用工具调用能力。以 ChatGPT 为例,大模型可在解方程、信息查询等简单任务上调用工具来实现更准确有效的结果,但在复杂任务上需要调用更多机制才能解决问题。

InternLM-7B 具备了这种通用工具调用能力,使模型在需要工具的时候自动编写一段 Python 程序,以综合调用多种能力,将得到的结果糅合到回答过程,大幅拓展模型能力。

正是在训练 - 评估 - 训练数据分布调整闭环、微调以及工具调用等多个方面的技术创新,才让 InternLM-7B 领跑所有同量级开源模型变成了可能。

大模型开源,就需要全链条

在书生・浦语全链条开源体系中,不仅囊括了丰富多元的训练数据、性能先进的训练与推理框架、灵活易用的微调与部署工具链,还有从非商业机构的更纯粹学术和中立视角出发构建的 OpenCompass 开放评测体系。

与同类型开源体系相比,书生・浦语的最大特点体现在链条的「长」。竞品工具链可能会覆盖从微调到部署等少量环节,但书生・浦语将数据、预训练框架、整个评测体系开源了出来。而且链条中一个环节到另一个环节,所有格式全部对齐,无缝衔接。

上海 AI 实验室围绕书生・浦语大模型打造了五位一体的技术内核。除了大模型本身,值得关注的还有预训练环节开源的面向轻量级语言大模型训练的训练框架 InternLM-Train 以及评测环节的开放评测平台 OpenCompass

img

书生・浦语全链条工具体系。图源:https://intern-ai.org.cn/home

我们知道,在现有 AI 大模型开发范式中,预训练 + 微调是主流。可见预训练对于大模型的重要性,很大程度上决定了模型任务效果。而其中底层的预训练框架要在能耗、效率、成本等方面尽可能做到节能、高效、低成本,因此框架的创新势在必行。

书生・浦语开源了训练框架 InternLM-Train。一方面深度整合了 Transformer 模型算子,使得训练效率得到提升。一方面提出了独特的 Hybrid Zero 技术,实现了计算和通信的高效重叠,训练过程中的跨节点通信流量大大降低。

得益于极致的性能优化,这套开源的体系实现了千卡并行计算的高效率。InternLM-Train 支持从 8 卡到 1024 卡的计算环境中高效训练 InternLM-7B 或者量级相仿的模型,训练性能达到了行业领先水平。千卡规模下的加速效率更是高达 90 %,训练吞吐超过 180Tflop,平均单卡每秒处理 token 也超过 3600。

如果说预训练决定了大模型的「成色」,评测则是校验大模型成色的关键一环。当前由于语言大模型的能力边界极广,很难形成全面、整体的评价,因而需要在开放环境中逐渐迭代和沉淀。

书生・浦语开源体系上线了 OpenCompass 开放评测体系,更纯粹学术和中立视角之外,它的另一大特点是基准「全」。除了自己的一套评测基准,OpenCompass 还整合了社区主流的几十套基准,未来还将接纳更多,从而让开源模型更充分地彼此较量。

img

图源:https://opencompass.org.cn/

具体地,OpenCompass 具有六大核心亮点。从模型评测框架来看,它开源可复现;从模型种类来看,它支持 Hugging Face 模型、API 模型和自定义开源模型等各类模型的一站式测评,比如 LLaMA、Vicuna、MPT、ChatGPT 等。InternLM-7B 正是在该平台上完成评测。

从能力维度来看,它提供了学科综合、语言能力、知识能力、理解能力、推理能力和安全性六大维度。同时提供这些能力维度下的 40+ 数据集、30 万道题目,评估更全面。

林达华教授认为,能力维度的广度和复杂度是模型评测面对的最大挑战。一方面要充分考虑如何从不同的维度进行评价,一方面当要评测的指标变多的时候,还要兼顾如何以负担得起的方式去评测。

此外,OpenCompass 非常高效,一行命令实现任务分割和分布式评测,数小时内完成千亿模型全量评测;评测范式多样化,支持零样本、小样本及思维链评测,结合标准型或对话型提示词模板轻松激发各种模型最大性能;拓展性极强,轻松增加新模型或数据集、甚至可以接入新的集群管理系统。

目前,OpenCompass 上线了 NLP 模型的评测,也即将支持多模态模型的评测。

随着 OpenCompass 平台的影响力增加,上海 AI 实验室希望对于大模型基准的评测也会对整个领域起到带动作用。与此同时,在构建 AI 标准化的大模型专题组中,上海 AI 实验室也与很多厂商形成了良好的合作关系。

img

在大模型快速演进的关键时期,标准制定与实施是推动产业进步的现实需求,也将为产业的可持续发展指明方向。

林达华教授表示:「创新是人工智能技术进步的源动力,而基座模型和相关的工具体系则是大模型创新的技术基石。通过此次书生・浦语的高质量全方位开源开放,我们希望可以助力大模型的创新和应用,让更多的领域和行业可以受惠于大模型变革的浪潮。」

做真正有影响力的工作

值得一提的是,上海AI 实验室成立的时间并不长——成立于 2020 年 7 月。作为一个新型研发机构,其主要开展重要基础理论和关键核心技术。得益于其原创性、前瞻性的科研布局,以及强大的科研团队,实验室近期在多个关键领域实现重大突破。

「我们坚持上下游协同,做出的大模型第一时间在团队中进行分享,在应用中得到反馈,进而持续迭代,」林达华介绍称。

上海 AI 实验室的技术领先,还在于做好三个方面的事:不设定发表论文或盈利的 KPI,做真正前沿有影响力的工作;开放创新空间,鼓励团队间积极交流,勇于尝试不同的方向与想法;最后,实验室为研究团队提供了海量数据和算力作为支持。

此次书生・浦语的开源体系降低了大模型技术探索和落地的门槛,对于学界和业界而言意义重大,帮助更多研究结构和企业省去了基础模型构建的步骤,他们可以在已有的强大模型与工具体系的基础上继续演进,实现创新。

未来,上海 AI 实验室还将基于「书生・浦语」,在基础模型和应用拓展方面进行探索,努力构建适用于关键领域落地的基础模型。

书生开源体系可以大幅降低大模型技术探索和落地的门槛,如果你感兴趣,欢迎来试试。

书生官网链接:
https://intern-ai.org.cn/home

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/44260.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从 ArcMap 迁移到 ArcGIS Pro

许多 ArcMap 用户正在因 ArcGIS Pro 所具有的现代 GIS 桌面工作流优势而向其迁移。 ArcGIS Pro 与其余 ArcGIS 平台紧密集成,使您可以更有效地共享和使用内容。 它还将 2D 和 3D 组合到一个应用程序中,使您可以在同一工程中使用多个地图和多个布局。 Arc…

【C++杂货铺】C++11新特性

目录 🌈 前言🌈 📁 C11介绍 📁 统一初始化列表 📁 声明 📂 auto 📂 decltype 📂 返回类型后置 📂 范围for 📂 模板别名 📂 nullptr &#x1…

服务器使用PC作为代理访问外网

1、PC上启动代理,比如nginx 下载nginx:http://nginx.org/en/download.html 修改配置文件,在conf下: http {include mime.types;default_type application/octet-stream;sendfile on;keepalive_timeout 65;server…

六、 SpringBoot 配置⽂件 ★ ✔

六、 SpringBoot 配置⽂件 本节⽬标1. 配置⽂件作⽤2. 配置⽂件快速⼊⼿3. 配置⽂件的格式4. properties 配置⽂件说明4.1 properties 基本语法4.2 读取配置⽂件4.3 properties 缺点分析 5. yml 配置⽂件说明5.1 yml 基本语法5.2 yml 使⽤进阶5.2.1 yml 配置不同数据类型及 nul…

好用的源代码加密软件有哪些?5款源代码防泄密软件推荐

源代码作为软件产品的核心组成部分,其安全性直接关系到整个软件系统的安全。源代码的泄露可能导致企业的技术秘密暴露,商业竞争力下降,甚至可能引发经济损失和法律责任问题。因此,对源代码进行加密保护,已经成为企业不…

windows安装启动mysql8.0版本的简单流程

1.下载mysql8.0.25版本 MySQL :: Download MySQL Community Server (Archived Versions) 2.解压到D盘的mysql文件夹,并修改环境变量 配置环境变量: winr键>输入control system>高级系统设置>点击环境变量 双击path后,新建 将bin目录粘贴进去,再点击确定 在cmd命令行…

【JavaScript 报错】未定义的变量或函数:Uncaught ReferenceError

🔥 个人主页:空白诗 文章目录 一、错误原因分析1. 变量未定义2. 函数未定义3. 块级作用域问题 二、解决方案1. 确保变量已定义2. 确保函数已定义3. 正确使用块级作用域 三、实例讲解四、总结 在JavaScript开发中,Uncaught ReferenceError 是一…

C#使用异步方式调用同步方法的实现方法

使用异步方式调用同步方法,在此我们使用异步编程模型(APM)实现 1、定义异步委托和测试方法 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading; using System.Threading.Task…

算法学习day10(贪心算法)

贪心算法:由局部最优->全局最优 贪心算法一般分为如下四步: 将问题分解为若干个子问题找出适合的贪心策略求解每一个子问题的最优解将局部最优解堆叠成全局最优解 一、摆动序列(理解难) 连续数字之间的差有正负的交替&…

Maven Nexus3 私服搭建、配置、项目发布指南

maven nexus私服搭建 访问nexus3官方镜像库,选择需要的版本下载:Docker Nexus docker pull sonatype/nexus3:3.49.0 创建数据目录并赋权 sudo mkdir /nexus-data && sudo chown -R 200 /nexus-data 运行(数据目录选择硬盘大的卷进行挂载) …

mysql快速精通(五)数据库备份与还原

主打一个实用 对于重要数据我们常常进行备份以应对突发情况,以下使用Navicat对数据进行备份,想了解sql语句的自寻 备份⬇️ 还原⬇️

自动化回复信息工具的开发分享!

在当今信息爆炸的时代,无论是个人还是企业,都面临着大量的信息处理和回复工作,为了提高效率,自动化回复信息工具变得越来越重要。 本文旨在分享一个简单但实用的自动化回复信息工具的五段源代码开发过程,帮助读者理解…

DNS正向解析,反向解析

目录 一、正向解析 1.下载DNS软件包 2.修改主配置文件 3.创建区域文件 4.配置DNS 5.测试 二、反向解析 1.修改主配置文件 2.创建区域文件 3.测试 一、正向解析 1.下载DNS软件包 [rootwww ~]# yum indtall -y bind注意: 下载软件前需要配置仓库&…

DolphinScheduler本地安装部署与远程任务调度管理实践应用

文章目录 前言1. 安装部署DolphinScheduler1.1 启动服务 2. 登录DolphinScheduler界面3. 安装内网穿透工具4. 配置Dolphin Scheduler公网地址5. 固定DolphinScheduler公网地址 前言 本篇教程和大家分享一下DolphinScheduler的安装部署及如何实现公网远程访问,结合内…

自动驾驶AVM环视算法--540度全景的算法实现和exe测试demo

参考:金书世界 540度全景影像是什么 540度全景影像是在360度全景影像基础上的升级功能,它增加了更多的摄像头来收集周围的图像数据。通常,这些摄像头分布在车辆的更多位置,例如车顶、车底等,以便更全面地捕捉车辆周围…

无人机游学技术及前景分析

一、技术概述 无人机,即无人驾驶飞行器,通过远程控制或自主飞行控制系统进行操作。随着科技的快速发展,无人机技术日益成熟,不仅广泛应用于军事侦察、打击等领域,也逐渐渗透到民用市场,包括农业植保、影视…

PostgreSQL17索引优化之支持并行创建BRIN索引

PostgreSQL17索引优化之支持并行创建BRIN索引 最近连续写了几篇关于PostgreSQL17优化器改进的文章,其实感觉还是挺有压力的。对于原理性的知识点,一方面是对这些新功能也不熟悉,为了尽可能对于知识点表述或总结做到准确,因此需要…

华为认证试题有题库吗?华为认证题库怎么领取?

在竞争激烈的就业环境下,若你拥有华为认证将可以提高个人综合能力,更好的适应行业变化。相信大家都有听说过想考取华为初级认证并不困难,因为它有专门的题库供考生备考。 那么,到底华为认证试题有题库吗?华为认证题库要怎么领取…

java并发编程之美-第1章 并发编程线程基础-线程的创建与运行

文章目录 1.什么是线程2. 线程创建和运行 1.什么是线程 进程是操作系统进行资源分配和调度的基本单位,线程是 CPU 分配的基本单位。 程序计数器用来记录线程当前要执行的指令地址。CPU一般是使用时间片轮转方式让线程轮询占用的,程序计数器是记录线程…

【Django】报错‘staticfiles‘ is not a registered tag library

错误截图 错误原因总结 在django3.x版本中staticfiles被static替换了,所以这地方换位static即可完美运行 错误解决