Java Stream API详解:高效处理集合数据的利器

引言

Java 8引入了许多新特性,其中最为显著的莫过于Lambda表达式和Stream API。Stream API提供了一种高效、简洁的方法来处理集合数据,使代码更加简洁明了,且具有较高的可读性和可维护性。本文将深入探讨Java Stream API的使用,包括基础概念、常用操作、并行处理、实战案例以及最佳实践等内容。

目录

  1. 什么是Stream API
  2. Stream API的基础操作
    • 创建Stream
    • 中间操作
    • 终端操作
  3. Stream API的高级操作
    • 排序
    • 筛选
    • 映射
    • 规约
    • 收集
  4. 并行Stream
  5. Stream API实战案例
    • 处理集合数据
    • 文件操作
    • 数据库操作
  6. Stream API的最佳实践
  7. 常见问题与解决方案
  8. 总结

什么是Stream API

Stream API是Java 8引入的一种用于处理集合数据的抽象,它允许以声明性方式(类似SQL语句)来处理数据。Stream API提供了许多强大的操作,可以用来对集合进行过滤、排序、映射、规约等操作,极大地简化了代码。

特点

  • 声明性编程:使用Stream API可以以声明性的方式编写代码,减少样板代码。
  • 链式调用:Stream API的操作可以链式调用,提高代码的可读性。
  • 惰性求值:中间操作是惰性求值的,只有在执行终端操作时才会进行计算。
  • 并行处理:支持并行处理,可以充分利用多核CPU的优势。

Stream API的基础操作

创建Stream

Stream API提供了多种方式来创建Stream,常见的有以下几种:

  1. 从集合创建
List<String> list = Arrays.asList("a", "b", "c");
Stream<String> stream = list.stream();
  1. 从数组创建
String[] array = {"a", "b", "c"};
Stream<String> stream = Arrays.stream(array);
  1. 使用Stream.of
Stream<String> stream = Stream.of("a", "b", "c");
  1. 使用Stream.generate
Stream<Double> stream = Stream.generate(Math::random).limit(10);
  1. 使用Stream.iterate
Stream<Integer> stream = Stream.iterate(0, n -> n + 2).limit(10);

中间操作

中间操作用于转换Stream,是惰性求值的,常见的中间操作有以下几种:

  1. filter:用于过滤元素。
Stream<String> stream = list.stream().filter(s -> s.startsWith("a"));
  1. map:用于映射每个元素到对应的结果。
Stream<String> stream = list.stream().map(String::toUpperCase);
  1. flatMap:用于将每个元素转换为Stream,然后合并成一个Stream。
Stream<String> stream = list.stream().flatMap(s -> Stream.of(s.split("")));
  1. distinct:用于去重。
Stream<String> stream = list.stream().distinct();
  1. sorted:用于排序。
Stream<String> stream = list.stream().sorted();
  1. peek:用于在处理过程中查看每个元素。
Stream<String> stream = list.stream().peek(System.out::println);

终端操作

终端操作用于启动Stream的计算,并生成结果,常见的终端操作有以下几种:

  1. forEach:对每个元素执行操作。
list.stream().forEach(System.out::println);
  1. collect:将Stream转换为其他形式。
List<String> result = list.stream().collect(Collectors.toList());
  1. reduce:将Stream中的元素规约成一个值。
Optional<String> result = list.stream().reduce((s1, s2) -> s1 + s2);
  1. toArray:将Stream转换为数组。
String[] array = list.stream().toArray(String[]::new);
  1. count:计算元素个数。
long count = list.stream().count();
  1. anyMatchallMatchnoneMatch:用于匹配判断。
boolean anyMatch = list.stream().anyMatch(s -> s.startsWith("a"));
boolean allMatch = list.stream().allMatch(s -> s.startsWith("a"));
boolean noneMatch = list.stream().noneMatch(s -> s.startsWith("a"));
  1. findFirstfindAny:用于查找元素。
Optional<String> first = list.stream().findFirst();
Optional<String> any = list.stream().findAny();

Stream API的高级操作

排序

使用sorted方法对Stream进行排序,可以传入一个比较器。

List<String> list = Arrays.asList("b", "c", "a");
List<String> sortedList = list.stream().sorted().collect(Collectors.toList());
// 逆序排序
List<String> sortedListDesc = list.stream().sorted(Comparator.reverseOrder()).collect(Collectors.toList());

筛选

使用filter方法对Stream中的元素进行筛选。

List<String> list = Arrays.asList("a", "b", "c");
List<String> filteredList = list.stream().filter(s -> s.startsWith("a")).collect(Collectors.toList());

映射

使用map方法对Stream中的元素进行映射。

List<String> list = Arrays.asList("a", "b", "c");
List<String> mappedList = list.stream().map(String::toUpperCase).collect(Collectors.toList());

规约

使用reduce方法对Stream中的元素进行规约。

List<String> list = Arrays.asList("a", "b", "c");
String result = list.stream().reduce("", (s1, s2) -> s1 + s2);

收集

使用collect方法将Stream转换为其他形式。

List<String> list = Arrays.asList("a", "b", "c");
List<String> collectedList = list.stream().collect(Collectors.toList());
Set<String> collectedSet = list.stream().collect(Collectors.toSet());
String joinedString = list.stream().collect(Collectors.joining(","));

并行Stream

并行Stream可以充分利用多核CPU的优势,提高数据处理的效率。可以使用parallelStream方法创建并行Stream。

List<String> list = Arrays.asList("a", "b", "c");
List<String> parallelList = list.parallelStream().map(String::toUpperCase).collect(Collectors.toList());

也可以使用parallel方法将普通Stream转换为并行Stream。

List<String> list = Arrays.asList("a", "b", "c");
List<String> parallelList = list.stream().parallel().map(String::toUpperCase).collect(Collectors.toList());

需要注意的是,并行Stream并不是总是比串行Stream更快,具体需要根据具体情况进行测试。

Stream API实战案例

处理集合数据

案例一:过滤并转换集合

给定一个包含若干字符串的集合,过滤掉长度小于3的字符串,并将剩余字符串转换为大写。

List<String> list = Arrays.asList("a", "ab", "abc", "abcd");
List<String> result = list.stream().filter(s -> s.length() >= 3).map(String::toUpperCase).collect(Collectors.toList());
System.out.println(result); // 输出:[ABC, ABCD]
案例二:计算平均值

给定一个包含若干整数的集合,计算所有整数的平均值。

List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);
OptionalDouble average = list.stream().mapToInt(Integer::intValue).average();
average.ifPresent(System.out::println); // 输出:3.0

文件操作

案例三:读取文件内容

使用Stream API

读取文件内容并输出到控制台。

try (Stream<String> lines = Files.lines(Paths.get("example.txt"))) {lines.forEach(System.out::println);
} catch (IOException e) {e.printStackTrace();
}
案例四:统计单词出现次数

读取文件内容并统计每个单词出现的次数。

try (Stream<String> lines = Files.lines(Paths.get("example.txt"))) {Map<String, Long> wordCount = lines.flatMap(line -> Arrays.stream(line.split("\\W+"))).collect(Collectors.groupingBy(String::toLowerCase, Collectors.counting()));wordCount.forEach((word, count) -> System.out.println(word + ": " + count));
} catch (IOException e) {e.printStackTrace();
}

数据库操作

案例五:处理数据库查询结果

假设我们有一个数据库表users,包含字段idnameage。我们可以使用Stream API处理查询结果。

List<User> users = queryDatabase();
List<String> names = users.stream().filter(user -> user.getAge() > 18).map(User::getName).collect(Collectors.toList());
System.out.println(names);

Stream API的最佳实践

  1. 避免不必要的并行化:并行Stream并不是总是更快,应该根据具体情况进行选择。
  2. 合理使用中间操作和终端操作:中间操作是惰性求值的,只有在执行终端操作时才会进行计算。
  3. 注意Stream的可复用性:Stream一旦被消费就不能再使用,如果需要复用,可以考虑将Stream转换为集合再使用。
  4. 使用合适的收集器Collectors类提供了多种收集器,可以根据具体需求选择合适的收集器。
  5. 处理异常:在使用Stream API时,需要处理可能出现的异常,尤其是在文件操作和数据库操作中。

常见问题与解决方案

Stream已关闭

Stream一旦被消费就不能再使用,如果需要复用,可以考虑将Stream转换为集合再使用。

List<String> list = Arrays.asList("a", "b", "c");
Stream<String> stream = list.stream();
stream.forEach(System.out::println);
stream.forEach(System.out::println); // 会抛出IllegalStateException

性能问题

并行Stream并不是总是比串行Stream更快,具体需要根据具体情况进行测试。可以使用ForkJoinPool来优化并行Stream的性能。

ForkJoinPool customThreadPool = new ForkJoinPool(4);
customThreadPool.submit(() ->list.parallelStream().forEach(System.out::println)
).get();

内存泄漏

在使用Stream API处理大数据量时,需要注意内存泄漏的问题。可以使用close方法关闭Stream,或者使用try-with-resources语句自动关闭Stream。

try (Stream<String> lines = Files.lines(Paths.get("example.txt"))) {lines.forEach(System.out::println);
} catch (IOException e) {e.printStackTrace();
}

总结

本文详细介绍了Java Stream API的使用,包括基础操作、高级操作、并行处理、实战案例以及最佳实践等内容。通过合理利用Stream API,开发者可以大大简化代码,提高代码的可读性和可维护性,同时还可以提高数据处理的效率。希望本文对你在Java开发中的Stream API使用有所帮助。

Java Stream API是处理集合数据的强大工具,通过灵活运用各种操作,可以实现高效的数据处理和流式计算。如果你还没有使用过Stream API,建议尽快学习和掌握这一强大的工具,将其应用到你的项目中,提升开发效率和代码质量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/44204.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QFileDialog的简单了解

ps&#xff1a;写了点垃圾&#xff08;哈哈哈&#xff09; 它继承自QDialog 这是Windows自己的文件夹 这是两者的对比图&#xff1a; 通过看QFileDialog的源码&#xff0c;来分析它是怎么实现这样的效果的。 源码组成&#xff1a; qfiledialog.h qfiledialog_p.h&#xff…

Python面试宝典第11题:最长连续序列

题目 给定一个未排序的整数数组 nums &#xff0c;找出数字连续的最长序列&#xff08;不要求序列元素在原数组中连续&#xff09;的长度。请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 示例 1&#xff1a; 输入&#xff1a;nums [100,4,200,1,3,2] 输出&#xff1a;…

微信小程序中的数据通信

方法1: 使用回调函数 在app.js中:可以在修改globalData后执行一个回调函数,这个回调函数可以是页面传递给app的一个更新函数。// app.js App({globalData: {someData: ,},setSomeData(newData, callback) {this.globalData.someData = newData;if (typeof callback === funct…

打造热销爆款:LazadaShopee店铺测评与关键词策略

面对Lazada和Shopee平台上店铺销量难以突破的困境&#xff0c;卖家们往往寻求各种解决方案。其中&#xff0c;店铺测评作为提升店铺信誉、优化产品排名及增加曝光度的有效手段&#xff0c;正逐渐成为卖家关注的焦点。以下将深入探讨店铺测评的好处、实施技巧及自养号的关键要素…

提升校园效率:智慧校园后勤管理中的寻物管理功能

在智慧校园后勤管理体系中&#xff0c;寻物管理功能扮演着连接遗失与找回的桥梁角色&#xff0c;它充分利用现代信息技术&#xff0c;为校园内的师生提供了一套高效、便捷的失物招领解决方案。此功能围绕以下几个核心方面展开。 首先&#xff0c;它支持在线报失与信息登记。一旦…

如何连接到公司的服务器?

1.下载FileZilla FileZilla的下载与安装以及简单使用&#xff08;有图解超简单&#xff09;-CSDN博客 2.打开 3.输入主机 用户名 密码 端口 注&#xff1a;主机支持的协议类型&#xff1a; 4.连接成功 其他方式也有很多&#xff0c;比如通过cmd&#xff0c;html网页等等 3个…

昇思25天学习打卡营第19天|ShuffleNet图像分类

今天是参加昇思25天学习打卡营的第19天&#xff0c;今天打卡的课程是“ShuffleNet图像分类”&#xff0c;这里做一个简单的分享。 1.简介 在第15-18日的学习内容中&#xff0c;我们陆陆续续学习了计算机视觉相关的模型包括图像语义分割、图像分类、目标检测等内容&#xff0c…

面试迟到了怎么办

嗨&#xff0c;我是兰若姐姐。作为一名面试官&#xff0c;最近面试了很多的测试候选人&#xff0c;有了很多感慨&#xff0c;借此抒发一下&#xff0c;我不知道别人面试更看重的是什么&#xff0c;但是在我这里&#xff0c;我最看重的是态度&#xff0c;其次才是技能 我觉得作…

vivado EXTRACT_ENABLE、EXTRACT_RESET

可提取 EXTRACT_ENABLE控制寄存器推断是否启用。通常&#xff0c;Vivado工具 提取或不提取基于启发式方法&#xff0c;通常有利于最大程度的 设计。如果Vivado的行为不符合预期&#xff0c;此属性将覆盖 工具的默认行为。如果有不希望的启用连接到CE引脚 触发器&#xff0c;此属…

中关村软件园发布“数据合规与出境评估服务平台”

在2024中关村论坛年会期间&#xff0c;中关村软件园发布“数据合规与出境评估服务平台”。该平台是中关村软件园结合北京市“两区”建设&#xff0c;立足软件园国家数字服务出口基地和数字贸易港建设&#xff0c;围绕园区内外部企业用户的业务合作、科研创新、跨国运营等场景需…

Python UDP编程之实时聊天与网络监控详解

概要 UDP(User Datagram Protocol,用户数据报协议)是网络协议中的一种,主要用于快速、简单的通信场景。与TCP相比,UDP没有连接、确认、重传等机制,因此传输效率高,但也不保证数据的可靠性和顺序。本文将详细介绍Python中如何使用UDP协议进行网络通信,并包含相应的示例…

七天.NET 8操作SQLite入门到实战 - 第一天 SQLite 简介

什么是SQLite&#xff1f; SQLite是一个轻量级的嵌入式关系型数据库&#xff0c;它以一个小型的C语言库的形式存在。它的设计目标是嵌入式的&#xff0c;而且已经在很多嵌入式产品中使用了它&#xff0c;它占用资源非常的低&#xff0c;在嵌入式设备中&#xff0c;可能只需要几…

Vscode插件推荐——智能切换输入法(Smart IME)

前言 相信广大程序员朋友在写代码的时候一定会遇到过一个令人非常头疼的事情——切换输入法&#xff0c;特别是对于那些勤于写注释的朋友&#xff0c;简直就是噩梦&#xff0c;正所谓懒人推动世界发展&#xff0c;这不&#xff0c;今天就向大家推荐一款好用的vscode插件&#…

ES6 Class(类) 总结(九)

ES6 中的 class 是一种面向对象编程的语法糖&#xff0c;提供了一种简洁的方式来定义对象的结构和行为。 JavaScript 语言中&#xff0c;生成实例对象的传统方法是通过构造函数。下面是一个例子。 function Point(x, y) {this.x x;this.y y; } Point.prototype.toString fu…

使用定时器消除抖动

问题&#xff1a;定时器中断和按键中断属于什么操作模式&#xff0c;轮询吗&#xff1f; 具体怎么实现 定时器中断 &#xff08;判断&#xff09; 时间参数 按键中断&#xff08;修改&#xff09; 中断 向量表.s文件 DCD SysTick_Handler …

如何理解跨界营销?详解跨界营销的主要类型和方法!

跨界营销是一种创新的营销策略&#xff0c;它巧妙地捕捉不同行业、产品和消费者偏好之间的共通点和潜在联系。这种策略将看似不相关的元素相互融合&#xff0c;相互影响&#xff0c;创造出一种全新的生活方式和审美观念&#xff0c;以此吸引目标消费者群体的注意和青睐。 通过…

Oracle左连接过滤条件注意事项

1、left join 结果集行数与主表查询结果集行数一致 2、主表与辅表多关联条件要括起来 3、对于辅表的过滤条件写在on后面是先对辅表过滤后再与主表关联&#xff0c;写在where后面是对主表与辅表关联后的结果集再进行过滤 4、对于主表的过滤条件写在on后面不生效&#xff0c;只能…

LiveNVR监控流媒体Onvif/RTSP用户手册-用户管理:编辑、添加用户、关联通道、重置密码、删除、过滤搜索

LiveNVR监控流媒体Onvif/RTSP用户手册-用户管理:编辑、添加用户、关联通道、重置密码、删除、过滤搜索 1、用户管理1.1、添加用户1.2、关联通道1.3、重置密码1.4、编辑1.5、删除1.6、过滤搜索 2、RTSP/HLS/FLV/RTMP拉流Onvif流媒体服务 1、用户管理 1.1、添加用户 点击用户管理…

学习网络的第一步:全面解析OSI与TCP/IP模型

我是小米,一个喜欢分享技术的29岁程序员。如果你喜欢我的文章,欢迎关注我的微信公众号“软件求生”,获取更多技术干货! Hello,大家好!我是你们的好朋友小米。今天我们来聊一聊网络基础知识中的重量级选手——OSI模型和TCP/IP模型!网络的世界就像一个巨大的迷宫,而这两个…

Docker 镜像构建报 exec xxx.sh: no such file or directory

问题记录 场景&#xff1a; 处于对nacos docker 部署最新版本的探究&#xff0c;但是nacos/nacos-server镜像拉取不到最新版本&#xff0c;官网也是给出自己构建镜像的方案。 具体步骤很简单&#xff0c;先clone项目&#xff0c;然后签出你要的nacos版本&#xff0c;通过docke…