FastGPT连接OneAI接入网络模型

文章目录

  • FastGPT连接OneAI接入网络模型
    • 1.准备工作
    • 2.开始部署
      • 2.1下载 docker-compose.yml
      • 2.2修改docker-compose.yml里的参数
    • 3.打开FastGPT添加模型
      • 3.1打开OneAPI
      • 3.2接入网络模型
      • 3.3重启服务

FastGPT连接OneAI接入网络模型

1.准备工作

本文档参考FastGPT的官方文档

主机ip接入模型主机名称系统
192.168.37.200文心一言fastgptcentos7

**部署架构图 **

img

本架构是用docker-compose进行部署

安装docker
[root@fastgpt ~]# yum install -y yum-utils device-mapper-persistent-data lvm2
[root@fastgpt ~]# yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
[root@fastgpt ~]# sed -i 's+download.docker.com+mirrors.aliyun.com/docker-ce+' /etc/yum.repos.d/docker-ce.repo
[root@fastgpt ~]# yum -y install docker-ce
[root@fastgpt ~]# systemctl enable --now docker
[root@fastgpt ~]# systemctl disable --now firewalld
[root@fastgpt ~]# setenforce 0安装docker-compose
[root@fastgpt ~]# curl -L https://github.com/docker/compose/releases/download/v2.20.3/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose% Total    % Received % Xferd  Average Speed   Time    Time     Time  CurrentDload  Upload   Total   Spent    Left  Speed0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100 56.6M  100 56.6M    0     0   168k      0  0:05:44  0:05:44 --:--:--  225k
[root@fastgpt ~]# chmod +x /usr/local/bin/docker-compose
[root@fastgpt ~]# docker -v
Docker version 26.1.4, build 5650f9b
[root@fastgpt ~]# docker-compose -v
Docker Compose version v2.20.3

2.开始部署

2.1下载 docker-compose.yml

[root@fastgpt ~]# mkdir fastgpt
[root@fastgpt ~]# cd fastgpt/
[root@fastgpt fastgpt]# curl -O https://raw.githubusercontent.com/labring/FastGPT/main/projects/app/data/config.json% Total    % Received % Xferd  Average Speed   Time    Time     Time  CurrentDload  Upload   Total   Spent    Left  Speed
100  5109  100  5109    0     0    236      0  0:00:21  0:00:21 --:--:--  1122
[root@fastgpt fastgpt]# curl -o docker-compose.yml https://raw.githubusercontent.com/labring/FastGPT/main/files/docker/docker-compose-pgvector.yml% Total    % Received % Xferd  Average Speed   Time    Time     Time  CurrentDload  Upload   Total   Spent    Left  Speed
100  5577  100  5577    0     0   9613      0 --:--:-- --:--:-- --:--:--  9598
[root@fastgpt fastgpt]# ls
config.json  docker-compose.yml

2.2修改docker-compose.yml里的参数

有些容器的镜像可能很难拉下来,这时可以配一个加速器或者把docker-compose.yml里的镜像源换成国内的阿里源

[root@fastgpt fastgpt]# docker-compose up -d
[root@fastgpt fastgpt]# sleep 10
[root@fastgpt fastgpt]# docker restart oneapi    #重启一次oneapi(由于OneAPI的默认Key有点问题,不重启的话会提示找不到渠道,临时手动重启一次解决,等待作者修复)

3.打开FastGPT添加模型

可以通过ip:3000访问FastGPT,默认账号为root密码为1234

安装成功之后

在这里插入图片描述

访问时注意关防火墙

我们访问上去是不能用的,需要让oneapi当作一个跳板来连接外部模型

3.1打开OneAPI

通过ip:3001访问OneAPI,默认账户为root密码是123456

在这里插入图片描述

3.2接入网络模型

以文心一言为例

创建一个渠道

在这里插入图片描述

注意在填写密钥的时候一定要是apikey|SecretKey的格式,我因为只填写的apikey导致一直测试不了花了我1个小时时间排错

测试一下

在这里插入图片描述

创建一个令牌

在这里插入图片描述

创建好令牌之后就可以获取OneAPI的APIkey了

在这里插入图片描述

获取到key之后回到docker-compose.yml中来

- OPENAI_BASE_URL=http://192.168.37.200:3001/v1   #这里填写OneAPI的访问地址,并在后面加上/v1
- CHAT_API_KEY=sk-jp8hCd3nJL0Z0fdg2b5d9aB3B1Bd4f8686Ae9fF62eA06eB1  #这里填写我们刚刚获取的APIkey

然后再修改config.json文件

"llmModels": [...{"model": "ERNIE-4.0-8K", // 这里的模型需要对应 One API 的模型"name": "文心一言", // 对外展示的名称"avatar": "/imgs/model/ernie.svg", // 模型的logo"maxContext": 16000, // 最大上下文"maxResponse": 4000, // 最大回复"quoteMaxToken": 13000, // 最大引用内容"maxTemperature": 1.2, // 最大温度"charsPointsPrice": 0,"censor": false,"vision": false, // 是否支持图片输入"datasetProcess": false, // 是否设置为知识库处理模型"usedInClassify": true, // 是否用于问题分类"usedInExtractFields": true, // 是否用于字段提取"usedInToolCall": true, // 是否用于工具调用"usedInQueryExtension": true, // 是否用于问题优化"toolChoice": true, // 是否支持工具选择"functionCall": false, // 是否支持函数调用"customCQPrompt": "", // 自定义文本分类提示词(不支持工具和函数调用的模型"customExtractPrompt": "", // 自定义内容提取提示词"defaultSystemChatPrompt": "", // 对话默认携带的系统提示词"defaultConfig":{}  // 请求API时,挟带一些默认配置(比如 GLM4 的 top_p)}...
],

添加模型向量

"vectorModels": [......{"model": "text-embedding-ada-002","name": "Embedding-2","avatar": "/imgs/model/openai.svg","charsPointsPrice": 0,"defaultToken": 700,"maxToken": 3000,"weight": 100},......
]

3.3重启服务

[root@fastgpt fastgpt]# docker-compose down && docker-compose up -d

在这里插入图片描述

这里就可以选择文心一言进行对话了

我们尝试进行一次对话

在这里插入图片描述
这样我们就接入好了网络模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/44093.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JDBC 实例分享——简易图书管理系统

目录 前言 数据表的建立 操作包各个类的实现 增加类 删除类 展示类 借阅与归还类 前言 书接上文 JDBC编程的学习——MYsql版本-CSDN博客 本期我们通过对先前图书管理系统进行改造,是它的数据能保存在数据库中 完整代码我已经保存在github中,能不能给个星呢!!!! call…

记一次若依框架和Springboot常见报错的实战漏洞挖掘

目录 前言 本次测实战利用图​ 1.判段系统框架 2.登录页面功能点测试 2.1 弱口令 2.2 webpack泄露信息判断 2.3 未授权接口信息发现 3.进一步测试发现新的若依测试点 3.1 默认弱口令 3.2 历史漏洞 4.访问8080端口发现spring经典爆粗 4.1 druid弱口令 4.2 SwaggerU…

热键危机:揭秘Memcached中的热键问题及其解决方案

热键危机:揭秘Memcached中的热键问题及其解决方案 Memcached是一种广泛使用的高性能分布式内存缓存系统,它通过缓存数据来减少对后端数据库的访问压力,从而提高应用性能。然而,Memcached也可能遇到热键(hot key&#…

浅析Kafka-Stream消息流式处理流程及原理

以下结合案例&#xff1a;统计消息中单词出现次数&#xff0c;来测试并说明kafka消息流式处理的执行流程 Maven依赖 <dependencies><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-streams</artifactId><exclusio…

Okhttp实现原理

OkHttp 是一个高效的 HTTP 客户端库&#xff0c;广泛应用于 Android 和 Java 应用中。它提供了简洁的 API&#xff0c;支持多种协议&#xff0c;如 HTTP/1.x 和 HTTP/2&#xff0c;并且内置了缓存和重试机制。下面是结合源码分析的 OkHttp 的实现原理&#xff1a; 核心组件 O…

Swift 数据类型

Swift 数据类型 Swift 是一种强类型语言,这意味着在 Swift 中声明的每个变量和常量都必须具有明确的类型。Swift 的类型系统旨在帮助开发者编写清晰、安全的代码。本文将详细介绍 Swift 中的基本数据类型,包括整数、浮点数、布尔值、字符和字符串。 整数类型 Swift 提供了…

音频语言学习领域数据集现状、分类及评估

Audio Language Learning (Audio-Text Learning) 是一个新兴的研究领域&#xff0c;专注于处理、理解和描述声音。它的发展动力是机器学习技术的进步以及越来越多地将声音与其相应的文本描述相结合的数据集的可用性。 Audio Language Models (ALMs) 是这个领域的关键技术&#…

MATLAB中的SDPT3、LMILab、SeDuMi工具箱

MATLAB中的SDPT3、LMILab、SeDuMi工具箱都是用于解决特定数学优化问题的工具箱&#xff0c;它们在控制系统设计、机器学习、信号处理等领域有广泛的应用。以下是对这三个工具箱的详细介绍&#xff1a; 1. SDPT3工具箱 简介&#xff1a; SDPT3&#xff08;Semidefinite Progra…

基于QT开发的反射内存小工具

前言 最近项目需要需要开发一个反射内存小工具&#xff0c;经过2天的修修改终于完成了。界面如下&#xff1a; 功能简介 反射内存指定地址数据读取反射内存指定地址数据写入反射内存指定地址数据清理十进制、十六进制、二进制数据相互转换 部分代码 void RfmMain::setWOthe…

SqlSugar-使用SqlSugar进行多数据库操作

使用SqlSugar进行多数据库操作主要涉及以下几个步骤&#xff1a; 1. 配置数据库连接 首先&#xff0c;你需要在项目的配置文件中&#xff08;如appsettings.json、web.config或app.config&#xff09;配置多个数据库的连接字符串。每个连接字符串都对应一个不同的数据库。 例…

攻防世界(PHP过滤器过滤)file_include

转换过滤器官方文档&#xff1a;https://www.php.net/manual/zh/filters.convert.php#filters.convert.iconv 这道题因为convert.base64-encode被过滤掉了&#xff0c;所以使用convert.iconv.*过滤器 在激活 iconv 的前提下可以使用 convert.iconv.* 压缩过滤器&#xff0c; 等…

Win10安装MongoDB(详细版)

文章目录 1、安装MongoDB Server1.1. 下载1.2. 安装 2、手动安装MongoDB Compass(GUI可视工具)2.1. 下载2.2.安装 3、测试连接3.1.MongoDB Compass 连接3.2.使用Navicat连接 1、安装MongoDB Server 1.1. 下载 官网下载地址 https://www.mongodb.com/try/download/community …

【第28章】MyBatis-Plus之插件主体

文章目录 前言一、MybatisPlusInterceptor 概览1. 属性2. InnerInterceptor 接口 二、使用示例1.Spring 配置2.Spring Boot 配置3 .mybatis-config.xml 配置 三、拦截忽略注解 InterceptorIgnore四、手动设置拦截器忽略执行策略五、本地缓存 SQL 解析总结 前言 MyBatis-Plus 提…

android 固定图片大小

在Android中&#xff0c;固定图片大小可以通过多种方法实现&#xff0c;这些方法主要涉及到ImageView控件的使用、Bitmap类的操作&#xff0c;以及第三方库&#xff08;如Glide&#xff09;的辅助。以下是几种常见的方法&#xff1a; 1. 使用ImageView控件 在Android的布局文…

利用docker容器安装node,使用vue的开发环境

目录 vue-app ├── docker-data │ ├── site │ ├── app ├── docker-compose.yaml └── deploy.sh docker-compose.yaml yaml文件执行 version: 3.8services:node:image: node:latestcontainer_name: vue-appports:- "8080:8080" # 宿主8080映射容器8…

系统服务综合项目

要求&#xff1a; 现有主机 node01 和 node02&#xff0c;完成如下需求&#xff1a; 1、在 node01 主机上提供 DNS 和 WEB 服务 2、dns 服务提供本实验所有主机名解析 3、web服务提供 www.rhce.com 虚拟主机 4、该虚拟主机的documentroot目录在 /nfs/rhce 目录 5、该目录由 no…

如何保证语音芯片的稳定性能和延长使用寿命

要让语音芯片保持稳定性能&#xff0c;首先需要深入理解其工作原理和内部构造。语音芯片&#xff0c;作为现代电子设备中的核心组件之一&#xff0c;承载着声音信号的处理与输出功能。为了确保其稳定运行&#xff0c;我们需要从多个方面进行细致的考虑和操作。‌ 1、避免长期高…

Windows系统MySQL的安装,客户端工具Navicat的安装

下载mysql安装包&#xff0c;可以去官网下载&#xff1a;www.mysql.com。点击downloads 什么&#xff1f;后面还有福利&#xff1f; 下载MySQL 下载企业版&#xff1a; 下载Windows版 5点多的版本有点低&#xff0c;下载8.0.38版本的。Window系统。下载下面的企业版。不下载…

乡镇集装箱生活污水处理设备处理效率高

乡镇集装箱生活污水处理设备处理效率高 乡镇集装箱生活污水处理设备优势 结构紧凑&#xff1a;集装箱式设计减少了占地面积&#xff0c;便于在土地资源紧张的乡镇地区部署。 安装方便&#xff1a;设备出厂前已完成组装和调试&#xff0c;现场只需进行简单的连接和调试即可投入使…

[数字图像处理]基础知识整理(部分,持续更新)

程序中描述一副图像&#xff0c;已知其横向纵向的像素个数即可&#xff08;&#xff09; 灰度直方图能反映一副图像各个灰度级像素占图像的面积比&#xff08;√&#xff09; 从程序编写的角度看&#xff0c;描述一副图像的基本属性通常包括其分辨率&#xff0c;即图像的宽度…