音频语言学习领域数据集现状、分类及评估

          Audio Language Learning (Audio-Text Learning) 是一个新兴的研究领域,专注于处理、理解和描述声音。它的发展动力是机器学习技术的进步以及越来越多地将声音与其相应的文本描述相结合的数据集的可用性。 Audio Language Models (ALMs) 是这个领域的关键技术,它们能够处理声音,并提供关于声音产生事件和场景的语音描述。随着计算能力和数据集创建方面的最新进展,该领域取得了显著进展。

1 背景

1.1 领域发展主要驱动因素

计算能力的进步及数据集的创建相互促进,共同推动了音频语言学习领域的快速发展。计算能力的进步使得处理和分析大量音频数据成为可能,而数据集的创建则提供了丰富的数据资源,支持了各种音频语言学习任务的研究。

1.1.1 计算能力的进步

  • 大语言模型 (LLM) 的出现: LLM 的出现为音频语言学习提供了强大的工具。LLM 能够处理和理解大量文本数据,并生成相应的文本输出。这为将音频数据与文本描述相结合提供了可能性,从而推动了音频语言学习的发展。
  • Transformer 模型的应用: Transformer 模型在自然语言处理领域取得了革命性的进展,并成功应用于音频语言学习。它们能够有效地处理序列数据,并捕捉音频和文本之间的复杂关系。

1.1.2 数据集的创建

  • Freesound 平台的发布: Freesound 平台提供了一个庞大的音频数据库,为音频语言学习提供了丰富的数据资源。用户可以上传和下载各种类型的音频文件,并将其与文本描述相关联。
  • AudioSet 的创建: AudioSet 是由 Google 开发的一个大规模音频分类数据集,包含超过 200 万个音频片段和 527 个音频事件类别。它为音频语言学习提供了标准化的数据格式和标签,并促进了该领域的研究进展。

1.2 音频语言学习的主要任务

1.2.1 音频到语言 (Audio-to-Language)

       这类模型将音频输入转换为文本输出,通常通过模型生成或从数据集中检索。该类别包含几个子领域:

  • 音频字幕 (Audio Captioning, AAC): 生成音频事件的自然语言描述。
  • 音频-文本检索 (Audio-Text Retrieval, ATR): 使用音频-语言对数据库查找给定音频输入的相关文本。
  • 音频问答 (Audio-Question Answering, AQA): 回答关于特定音频内容的自然语言问题。
  • 音频差异字幕 (Audio Difference Captioning, ADC): 生成描述,强调相似音频片段之间内容差异。

1.2.2 语言到音频 (Language-to-Audio)

       这类模型使用语言输入来生成或检索音频。

  • 音频生成 (Audio Generation, AG): 根据自然语言提示创建音频。
  • 文本到音频检索 (Text-to-Audio Retrieval, TAR): 使用自然语言查询从包含音频-语言对的数据库中查找匹配的音频片段。
  • 语言查询音频源分离 (Language-Queried Audio Source Separation, LASS): 使用自然语言描述来确定(并隔离)混合声音中的特定声音来源。

1.3 音频语言模型 (ALM) 的训练方法

音频语言模型 (ALM) 的训练方法主要分为三大类,每种方法都有其独特的优缺点和适用场景。

1.3.1 基于跨注意力机制的方法

利用跨注意力机制将音频特征与文本输出进行对齐,实现音频和文本之间的信息融合。

1.3.1.1 常见模型架构

 编码器 (如 CNN 或 Transformer) 处理音频信号,输出特征作为注意力机制的键和查询。文本解码器则利用这些特征生成文本描述。

1.3.1.2 优点

  • 能够有效地融合音频和文本信息,即使直接从音频到文本的学习不可行。
  • 可以使用静态 (或冻结) 的音频编码器和文本解码器,降低训练成本。

1.3.1.3 缺点

  • 需要映射网络来适配编码器输出和文本解码器的输入,可能引入额外的复杂性。
  • 跨注意力机制的计算成本较高。

1.3.2 基于音频前缀的方法

将音频编码器的输出映射到文本解码器的序列起始位置,将音频信息作为文本生成的先验知识。

1.3.2.1 常见模型架构

音频编码器 (如 CNN 或 Transformer) 的输出与文本解码器的输入进行拼接,文本解码器根据先验信息和当前文本生成文本描述。

1.3.2.2 优点

  • 计算成本较低,训练速度较快。
  • 可以将多种音频类型进行统一编码,实现模型泛化。
  • 可以使用冻结的编码器进行预训练,降低训练成本。

1.3.2.3 缺点

  • 音频信息对文本生成的影响程度难以控制。
  • 可能导致文本生成过程中音频信息的过度强调。

1.3.3 基于预训练模型的方法 (零样本)

利用预训练的多模态网络或大型语言模型 (LLM) 进行音频描述的生成,无需针对音频描述任务进行特定训练。

1.3.3.1 常见模型架构

使用预训练的多模态网络提取音频特征,LLM 根据文本描述和音频特征生成文本描述。

1.3.3.2 优点

  • 可以利用预训练模型的知识和经验,提高模型性能。
  • 可以快速生成音频描述,无需进行特定训练。

1.3.3.3 缺点

  • 预训练模型可能存在偏差,影响音频描述的准确性。
  • 难以控制音频信息对文本生成的影响程度。

2 音频语言数据集

2.1 调查方法

      通过手动审查2019年至2023年在Google Scholar上列出的出版物来识别的

2.2 数据集分类

  • YouTube 数据集:AudioSet, AudioCaps, FAVDBench, Take It Seriously, SoundWords
  • Freesound 数据集:Clotho, Clotho-Detail, ClothoAQA, FSD50k
  • 音效数据集:WavText5k, BBC Sound Effects, SoundDescs, Pro Sound Effects
  • 其他类别:MACS, Hospital & Car Dataset (AudioCaption), AnimalSpeak, CAPTDURE, SAM-S, SoundingEarth
  • 音频问答数据集:ClothoAQA, mClothoAQA, DAQA, AQUALLM, Audio Conversation 10k (MULTIS), LTU / OpenAQA-5M
  • 音频差异字幕数据集:MIMII-Change, AudioDiffCaps
  • 音频语言汇总数据集:Auto-ACD, ONE-PEACE Pretraining set, LAION-Audio-630k, MS-CLAP, TangoPromptBank, WavCaps, NetEase AAC Dataset
  • 音频-语音-音乐汇总数据集:HEAR benchmark, SALMONN, Comp-A, Qwen-Audio, Pengi, Mix-185K, Uniaudio, AudioLDM, CLARA

2.3 音频语言数据集的特点

  • 音频长度: 音频片段的长度可能有所不同,从几秒钟到几分钟不等。
  • 文本长度: 字幕的长度也可能不同,从单个单词到完整的段落不等。
  • 音频类型: 数据集中的音频类型可能包括人声、音乐、环境声音、动物声音等。
  • 文本语言: 字幕的语言可能包括多种语言,包括英语、中文、西班牙语等。
  • 数据来源: 数据集的来源可能包括 YouTube、Freesound、音效库、现场录音、电视节目等。

2.4 音频语言数据集的应用

  • 音频字幕: 使用模型将音频转换为文本描述。
  • 音频-文本检索: 使用模型查找与给定音频输入相关的文本描述。
  • 音频问答: 使用模型回答关于特定音频内容的问题。
  • 音频差异字幕: 使用模型生成描述,强调相似音频片段之间内容差异。

2.5 音频语言数据集的挑战

  • 数据稀缺: 可用的音频语言数据集相对较少,限制了模型的发展。
  • 数据质量: 一些数据集可能包含噪声或低质量的文本描述,影响模型的性能。
  • 数据偏差: 数据集可能存在偏差,例如性别、种族或语言偏差,影响模型的公平性。
  • 数据重叠: 一些数据集可能存在重叠,影响模型的学习效果。

3 评估

我们将对本文中的主要音频数据集进行评估。首先,我们将提供基于大规模主成分分析的音频和文本嵌入的可视化,这些可视化图示说明了不同数据集之间音频和文本内容的相对距离以及它们在AudioSet顶级类别中的绝对数量。其次,我们将提供数据泄露的定量评估。数据泄露发生在评估数据在训练期间对机器学习模型可访问时。

3.1 评估音频数据集的主要指标

  • 数据质量: 评估数据集的噪声水平、文本描述的准确性和一致性等。
  • 数据多样性: 评估数据集中音频类型、语言、场景和事件的范围。
  • 数据完整性: 评估数据集的完整性,例如是否有缺失的音频文件或文本描述。
  • 数据分布: 评估数据集中音频和文本的分布,例如是否存在类别不平衡或分布偏移。
  • 数据重叠: 评估数据集中不同数据集之间的重叠,例如是否存在相同的音频文件或文本描述。

3.2 评估音频数据集的方法

  • 可视化: 使用图表和图形来展示数据集中音频和文本的特征,例如音频-文本嵌入的主成分分析 (PCA)。
  • 统计分析: 使用统计方法来分析数据集的特征,例如计算音频和文本的平均长度、标准差、唯一单词数等。
  • 数据泄露分析: 检查训练数据中是否存在关于测试数据的任何信息,这可能导致模型在测试数据上的过度拟合。
  • 重复数据分析: 检查数据集中是否存在重复的音频文件或文本描述,这可能导致模型学习到不必要的模式。

3.3 评估结果

3.3.1 音频和文本嵌入的可视化

  • 通过大规模的主成分分析 (PCA),将音频和文本嵌入进行了可视化,并计算了数据点之间的距离。结果显示,不同的数据集在音频和文本内容方面存在着显著差异,例如 AnimalSpeak 在音频嵌入方面与其它数据集差异最大,而 mAQA 在文本嵌入方面与其它数据集差异最大。
  • 通过将音频和文本分类到 AudioSet 的顶级类别中,展示了不同数据集中声音的相对分布。结果显示,音乐、人类声音和物体声音是数据集中最常见的类别,这与 AudioSet 中语音和音乐的广泛存在有关。

3.3.2 重复分析

通过比较音频文件的梅尔谱图,发现了一些数据集之间存在重叠,例如 AudioCaps 和 Clotho 与 WavCaps 之间存在重叠。这表明,在训练模型时,可能存在数据泄露,导致模型在测试集上获得过高的性能。

AnimalSpeak和Audioset数据集与其他数据集有相对较高的重叠。AudioDiffCaps、MACS相对很少有其他相似的数据集。

3.3.3 数据质量

由于公开数据集中高质量训练数据的稀缺,研究人员通常依赖于大规模的噪声数据集。然而,这些数据集可能会引入分布偏移,导致模型在实际应用中的性能下降。

建议使用经过筛选和处理的数据集,例如 Revised-Clotho 和没有数据泄露的 SoundDescs 分割版本,以提高数据质量并改善模型性能。

3.3.4 数据偏差

  • 交叉污染: 当训练数据与测试数据重叠时,会导致模型在测试集上获得过高的性能,掩盖模型在真实世界数据上的真实性能。
  • 视觉支持数据集: 一些数据集包含与视觉内容相关的标签或注释,这可能会导致模型学习到与音频无关的视觉信息,从而引入偏差。
  • 多样性偏差: 音频数据集可能存在不平衡,这可能会影响模型对代表性不足的群体的性能。

3.4 评估音频数据集的重要性

  • 指导数据集开发: 评估可以帮助研究人员了解数据集的局限性,并指导未来的数据集开发工作,例如增加数据多样性、改进数据质量或减少数据重叠。
  • 选择合适的模型: 评估可以帮助研究人员选择最适合特定任务的数据集,例如使用具有更多与任务相关的音频类型和场景的数据集。
  • 提高模型的性能: 评估可以帮助研究人员了解数据集对模型性能的影响,并指导未来的模型训练工作,例如使用数据增强或数据清洗技术。

3.5 评估音频数据集的挑战

  • 缺乏标准化的评估指标: 目前没有标准化的评估指标来衡量音频数据集的质量和适用性。
  • 数据获取困难: 一些数据集可能难以获取,例如受版权保护的数据集。
  • 数据标注成本高: 音频数据标注是一个耗时且成本高昂的过程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/44086.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MATLAB中的SDPT3、LMILab、SeDuMi工具箱

MATLAB中的SDPT3、LMILab、SeDuMi工具箱都是用于解决特定数学优化问题的工具箱,它们在控制系统设计、机器学习、信号处理等领域有广泛的应用。以下是对这三个工具箱的详细介绍: 1. SDPT3工具箱 简介: SDPT3(Semidefinite Progra…

基于QT开发的反射内存小工具

前言 最近项目需要需要开发一个反射内存小工具,经过2天的修修改终于完成了。界面如下: 功能简介 反射内存指定地址数据读取反射内存指定地址数据写入反射内存指定地址数据清理十进制、十六进制、二进制数据相互转换 部分代码 void RfmMain::setWOthe…

攻防世界(PHP过滤器过滤)file_include

转换过滤器官方文档:https://www.php.net/manual/zh/filters.convert.php#filters.convert.iconv 这道题因为convert.base64-encode被过滤掉了,所以使用convert.iconv.*过滤器 在激活 iconv 的前提下可以使用 convert.iconv.* 压缩过滤器, 等…

Win10安装MongoDB(详细版)

文章目录 1、安装MongoDB Server1.1. 下载1.2. 安装 2、手动安装MongoDB Compass(GUI可视工具)2.1. 下载2.2.安装 3、测试连接3.1.MongoDB Compass 连接3.2.使用Navicat连接 1、安装MongoDB Server 1.1. 下载 官网下载地址 https://www.mongodb.com/try/download/community …

利用docker容器安装node,使用vue的开发环境

目录 vue-app ├── docker-data │ ├── site │ ├── app ├── docker-compose.yaml └── deploy.sh docker-compose.yaml yaml文件执行 version: 3.8services:node:image: node:latestcontainer_name: vue-appports:- "8080:8080" # 宿主8080映射容器8…

系统服务综合项目

要求: 现有主机 node01 和 node02,完成如下需求: 1、在 node01 主机上提供 DNS 和 WEB 服务 2、dns 服务提供本实验所有主机名解析 3、web服务提供 www.rhce.com 虚拟主机 4、该虚拟主机的documentroot目录在 /nfs/rhce 目录 5、该目录由 no…

如何保证语音芯片的稳定性能和延长使用寿命

要让语音芯片保持稳定性能,首先需要深入理解其工作原理和内部构造。语音芯片,作为现代电子设备中的核心组件之一,承载着声音信号的处理与输出功能。为了确保其稳定运行,我们需要从多个方面进行细致的考虑和操作。‌ 1、避免长期高…

Windows系统MySQL的安装,客户端工具Navicat的安装

下载mysql安装包,可以去官网下载:www.mysql.com。点击downloads 什么?后面还有福利? 下载MySQL 下载企业版: 下载Windows版 5点多的版本有点低,下载8.0.38版本的。Window系统。下载下面的企业版。不下载…

[数字图像处理]基础知识整理(部分,持续更新)

程序中描述一副图像,已知其横向纵向的像素个数即可() 灰度直方图能反映一副图像各个灰度级像素占图像的面积比(√) 从程序编写的角度看,描述一副图像的基本属性通常包括其分辨率,即图像的宽度…

Docker镜像和容器的管理

1 Docker镜像管理操作 开启镜像加速 根据关键字查询镜像 下载查看镜像 详细镜像信息 查看latest版本 上传镜像到阿里云仓库 2 Docker容器操作 关于容器根据第一个pid进程是否能正常在前台运行

19. 地址转换

地址转换 题目描述 Excel 是最常用的办公软件。每个单元格都有唯一的地址表示。比如:第 12 行第 4 列表示为:"D12",第 5 行第 255 列表示为"IU5"。 事实上,Excel 提供了两种地址表示方法,还有一…

算法训练营第30天|122.买卖股票的最佳时机II|55. 跳跃游戏|45.跳跃游戏II|1005.K次取反后最大化的数组和

122.买卖股票的最佳时机II 思路:只有前一天与后一天的利润为正时,才将其加入总利润。 55. 跳跃游戏 思路:找最大覆盖范围 出错点:数组的遍历,遍历范围应该是覆盖范围内 45.跳跃游戏II 思路: 局部最优&am…

批量爬取B站网络视频信息

使用XPath爬取B站视频链接等相关信息 分析B站html框架获取内容完整代码 对于B站,目前网上的爬虫大多都是使用通过解析服务器的响应来爬取想要的内容,下面我们通过使用XPath来爬取B站上一些想要的信息 此次任务我们需要对B站搜索到的关键字,并…

数据结构 —— FloydWarshall算法

数据结构 —— FloydWarshall算法 FloydWarshall算法三种最短路径算法比较1. Dijkstra算法2. Bellman-Ford算法3. Floyd-Warshall算法总结 我们之前介绍的两种最短路径算法都是单源最短路径,就是我们要指定一个起点来寻找最短路径,而我们今天介绍的Floyd…

ctfshow-web入门-文件上传(web166、web167)(web168-web170)免杀绕过

目录 1、web166 2、web167 3、web168 4、web169 5、web170 1、web166 查看源码,前端只让传 zip 上传 zip 成功后可以进行下载 随便搞一个压缩包,使用记事本编辑,在其内容里插入一句话木马: 上传该压缩包,上传成功…

附下载 | 100项能源领域网络与数据安全政策全集(2024版)

能源是工业的粮食,能源安全事关国家根本安全。当今国际局势风云变幻,全球地缘政治、经济、科技体系正经历深刻变化,能源局势将更加错综复杂,威胁能源安全的各种“灰犀牛”“黑天鹅”事件时有发生,促使国际能源版图深刻…

system V共享内存【Linux】

文章目录 原理shmgetftokshmat(share memory attach)shmdt,去关联(share memory delete attach)shmctl ,删除共享内存共享内存与管道 原理 共享内存本质让不同进程看到同一份资源。 申请共享内存: 1、操作系统在物理内存当中申请…

Qt中实现让静态图片动起来,创建动画效果

在现代应用程序开发中,动画效果是提升用户体验的重要元素之一。Qt作为一个强大的跨平台应用程序框架,提供了丰富的工具和库来创建各种动画效果。本文将介绍如何在Qt中使用静态图片创建动画效果。 实现方法一 使用QTimer和QPixmap 1.准备图片资源&#…

Qt图形与图片(Qt位置相关函数、Qt基础图形的绘制、双缓冲机制、显示SVG格式图片)

此篇文章介绍几种主要位置函数及其之间的区别,以及各种与位置相关函数的使用场合;然后,通过一个简单绘图工具实例,介绍利用QPainter和QPainterPath两种方法绘制各种基础图形;最后,通过几个实例介绍如何利用…

GD32F303RET6读取SGM58031电压值

1、SGM58031芯片详解 (1)SGM58031是一款低功耗,16位精度,delta-sigma (ΔΣ)模数转换器(ADC)。它从3V到5.5V供电。 (2)SGM58031包含一个片上参考和振荡器。它有一个I2C兼容接口,可以选择四个I2…