机器学习——LR、‌GBDT、‌SVM、‌CNN、‌DNN、‌RNN、‌Word2Vec等模型的原理和应用

LR(逻辑回归)

原理
逻辑回归模型(Logistic Regression, LR)是一种广泛应用于分类问题的统计方法,尤其适用于二分类问题。其核心思想是通过Sigmoid函数将线性回归模型的输出映射到(0,1)区间,从而得到属于某个类别的概率。逻辑回归模型假设数据服从伯努利分布,且样本的概率是Sigmoid函数

应用
逻辑回归模型因其简单、可解释性强、易于实现等特点,被广泛应用于机器学习、深度学习、推荐系统、广告预估、智能营销、金融风控、社会学、生物学、经济学等领域。

GBDT(梯度提升决策树)

原理
GBDT(Gradient Boosting Decision Tree)是一种基于决策树的集成学习算法,属于Boosting类型。它通过叠加多个决策树的预测结果得出最终的预测结果。GBDT的训练过程基于梯度下降的思想,使用加法模型和函数优化方法,每次训练都基于之前训练结果来进行优化。

应用
GBDT在分类、回归等多种预测任务中都有出色的表现,是许多复杂预测问题的首选算法之一。在生产环境中,GBDT的变种如XGBoost和LightGBM等算法也被广泛应用。

SVM(支持向量机)

原理
支持向量机(Support Vector Machine, SVM)是一种经典的监督学习算法,用于解决二分类和多分类问题。其核心思想是在特征空间中找到一个最优的超平面来进行分类,并且间隔最大。SVM通过求解凸二次规划问题来找到这个最优超平面,使得分类间隔最大化。

应用
SVM在文本分类、图像分类、生物信息学等领域都有广泛的应用。特别是在中小型复杂数据集的分类问题上,SVM表现出了良好的性能。

CNN(卷积神经网络)

原理
卷积神经网络(Convolutional Neural Networks, CNN)是一种前馈神经网络,具有层次结构,主要由卷积层、池化层、全连接层等组成。CNN通过卷积操作提取输入数据的局部特征,并通过池化操作降低特征图的维度,从而实现对输入数据的有效表示。

应用
CNN在图像识别、语音识别、自然语言处理等领域都有广泛的应用。特别是在图像识别方面,CNN通过训练可以学习到丰富的特征表示,从而实现对图像的有效分类和识别。

DNN(深度神经网络)

原理
深度神经网络(Deep Neural Networks, DNN)是一种包含多个隐藏层的神经网络模型。它通过多层非线性变换将输入数据映射到输出数据,从而实现对复杂函数的逼近。DNN的训练过程通常使用反向传播算法和梯度下降法来优化网络参数。

应用
DNN在图像识别、语音识别、自然语言处理等领域都有广泛的应用。随着计算能力的提升和大数据的兴起,DNN在解决复杂预测问题方面表现出了强大的能力。

RNN(循环神经网络)

原理
循环神经网络(Recurrent Neural Networks, RNN)是一种适用于序列数据处理的神经网络模型。它通过引入循环连接来捕捉序列数据中的时间依赖关系,从而实现对序列数据的建模和预测。

应用
RNN在自然语言处理、语音识别、时间序列分析等领域都有广泛的应用。特别是在自然语言处理方面,RNN能够有效地捕捉句子中的语义信息,从而实现对文本的有效理解和生成。

Word2Vec

原理
Word2Vec是一种用于学习词向量表示的神经网络模型。它通过将词映射到高维空间中的向量来捕捉词之间的语义关系。Word2Vec通常包括CBOW(Continuous Bag of Words)和Skip-gram两种模型结构。

应用
Word2Vec在自然语言处理领域有广泛的应用,如文本分类、情感分析、机器翻译等。通过学习到的词向量表示,可以方便地实现文本数据的向量化处理,从而便于后续的机器学习任务。

以上是对LR、GBDT、SVM、CNN、DNN、RNN、Word2Vec等模型原理和应用的简要介绍。这些模型各有特点和应用场景,在实际应用中需要根据具体问题的需求来选择合适的模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/43394.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【AI前沿】深度学习:神经网络基础

文章目录 📑引言一、神经元和感知器1.1 神经元的基本概念1.2 感知器模型 二、多层感知器(MLP)2.1 MLP的基本结构2.2 激活函数的重要性2.3 激活函数2.4 激活函数的选择 三、小结 📑引言 深度学习是现代人工智能的核心技术之一&…

kotlin Flow 学习指南 (三)最终篇

目录 前言Flow生命周期StateFlow 替代LiveDataSharedFlow其他常见应用场景处理复杂、耗时逻辑存在依赖关系的接口请求组合多个接口的数据 Flow使用注意事项总结 前言 前面两篇文章,介绍了Flow是什么,如何使用,以及相关的操作符进阶&#xff…

如何挑选适合的需求池管理系统?10款优质工具分享

本文将分享10款优质需求池管理工具:PingCode、Worktile、Teambition、Epicor Kinetic、TAPD、SAP IBP、Logility、RELEX Solutions、JIRA、明道云。 在管理项目和产品需求时,正确的工具能够大幅提高效率与透明度。如何从众多需求池工具中选择最适合团队的…

第一节 SHELL脚本中的常用命令(2)

二,网络管理命令nmcli 1.查看网卡 # 或者先用ip addr或ip a等查看网卡 ip a s 网卡名 ifconfig 网卡名 nmcil device show 网卡名 nmcil device status nmcil connection show 网卡名2.设置网卡 a)当网卡未被设置过时 设置dncp网络工作模式 nmcil connection add con-name…

Rust编程-编写自动化测试

编写单元测试步骤: 1. 准备所需的数据 2. 调用需要测试的代码 3. 断言运行结果与我们所期望的一致 Rust的test元数据: #[cfg(test)]:是一个属性宏(attribute macro)。用于控制特定的代码段仅在测试环境中编译…

自定义类型:联合体

像结构体一样,联合体也是由一个或者多个成员组成,这些成员可以是不同的类型。 联合体类型的声明 编译器只为最⼤的成员分配⾜够的内存空间。联合体的特点是所有成员共⽤同⼀块内存空间。所以联合体也叫:共⽤体。 输出结果: 联合体…

size_t 数据类型的好处

什么是size_t size_t 类型在不同的平台上对应不同的底层整数类型,具体取决于平台的指针大小。size_t 主要用于表示大小和长度,如数组的元素数量、缓冲区的大小等,它的设计目的是为了匹配指针的大小,以避免类型不匹配引起的错误。…

代码随想录算法训练营DAY58|101.孤岛的总面积、102.沉没孤岛、103. 水流问题、104.建造最大岛屿

忙。。。写了好久。。。。慢慢补吧。 101.孤岛的总面积 先把周边的岛屿变成水dfs def dfs(x, y, graph, s):if x<0 or x>len(graph) or y<0 or y>len(graph[0]) or graph[x][y]0:return sgraph[x][y]0s1s dfs(x1, y, graph, s)s dfs(x-1, y, graph, s)s dfs(…

【爬虫入门知识讲解:xpath】

3.3、xpath xpath在Python的爬虫学习中&#xff0c;起着举足轻重的地位&#xff0c;对比正则表达式 re两者可以完成同样的工作&#xff0c;实现的功能也差不多&#xff0c;但xpath明显比re具有优势&#xff0c;在网页分析上使re退居二线。 xpath 全称为XML Path Language 一种…

软考高级第四版备考--第16天(规划沟通管理)Plan Communication Management

定义&#xff1a;基于每个干系人或干系人群体的信息需求、可用的组织资产以及具体的项目的需求&#xff0c;为项目沟通活动制定恰当的方法和计划的过程。 作用&#xff1a; 及时向干系人提供相关信息&#xff1b;引导干系人有效参与项目&#xff1b;编制书面沟通计划&#xf…

【基于R语言群体遗传学】-16-中性检验Tajima‘s D及连锁不平衡 linkage disequilibrium (LD)

Tajimas D Test 已经开发了几种中性检验&#xff0c;用于识别模型假设的潜在偏差。在这里&#xff0c;我们将说明一种有影响力的中性检验&#xff0c;即Tajimas D&#xff08;Tajima 1989&#xff09;。Tajimas D通过比较数据集中的两个&#x1d703; 4N&#x1d707;估计值来…

vue项目中常见的一些preset及其关系

Babel的作用 Babel主要用途是用来做js代码转换的&#xff0c;将最新的js语法或者api转换成低版本浏览器可兼容执行的代码。 语法兼容是指一些浏览器新特性增加的js写法&#xff0c;例如箭头函数 ()>{}&#xff1b;低版本的浏览器无法识别这些&#xff0c;会导致一些语法解…

spark shuffle写操作——UnsafeShuffleWriter

PackedRecordPointer 使用long类型packedRecordPointer存储数据。 数据结构为&#xff1a;[24 bit partition number][13 bit memory page number][27 bit offset in page] LongArray LongArray不同于java中long数组。LongArray可以使用堆内内存也可以使用堆外内存。 Memor…

秋招突击——7/9——字节面经

文章目录 引言正文八股MySQL熟悉吗&#xff1f;讲一下MySQL索引的结构&#xff1f;追问&#xff1a;MySQL为什么要使用B树&#xff1f;在使用MySQL的时候&#xff0c;如何避免索引失效&#xff1f;讲一下MySQL的事物有哪几种特征&#xff1f;MySQL的原子性可以实现什么效果&…

GESP C++ 三级真题(2023年9月)T2 进制判断

进制判断 问题描述 N进制数指的是逢N进一的计数制。例如&#xff0c;人们日常生活中大多使用十进制计数&#xff0c; 而计算机底层则一般使用二进制。除此之外&#xff0c;八进制和十六进制在一些场合也是 常用的计数制(十六进制中&#xff0c;一般使用字母A至F表示十至十五…

【区块链+跨境服务】粤澳健康码跨境互认系统 | FISCO BCOS应用案例

2020 年突如其来的新冠肺炎疫情&#xff0c;让社会治理体系面临前所未见的考验&#xff0c;如何兼顾疫情防控与复工复产成为社会 各界共同努力的目标。区块链技术作为传递信任的新一代信息基础设施&#xff0c;善于在多方协同的场景中发挥所长&#xff0c;从 而为粤澳两地的疫情…

uniapp上传文件并获取上传进度

1. 上传普通文件 uni.chooseMessageFile({count: 1,success: (res) > {console.log(res)console.log("res123456", res.tempFiles[0].path)const uploadTask uni.uploadFile({url: http://localhost:8000/demo,filePath: res.tempFiles[0].path,name: file,form…

CSS关于居中的问题

文章目录 1. 行内和块级元素自身相对父控件居中1.1. 块级元素相对父控件居中1.2. 行内元素相对于父控件居中 2. 实现单行文字垂直居中3. 子绝父相实现子元素的水平垂直居中3.1. 方案一3.1.1. 示例 3.2. 方案二3.2.1. 示例 3.3. 方案三(推荐)3.3.1. 示例 3.4. 方案四(了解一下) …

AI大模型知识点大梳理_ai大模型的精度以下哪项描述的准确

AI大模型是什么 AI大模型是指具有巨大参数量的深度学习模型&#xff0c;通常**包含数十亿甚至数万亿个参数。**这些模型可以通过学习大量的数据来提高预测能力&#xff0c;从而在自然语言处理、计算机视觉、自主驾驶等领域取得重要突破。 AI大模型的定义具体可以根据参数规模…

短信验证码研究:公开的短信验证码接口、不需要注册的短信验证码接口

短信验证码研究&#xff1a;公开的短信验证码接口、不需要注册的短信验证码接口 0 说明 本文提供了一个短信验证码接口&#xff0c;主要用于以下场景&#xff1a; 1、用于开发调试 2、用于申请验证码困难的企业和个人 3、用于短信验证码认证还没有通过&#xff0c;但是着急…