【AI前沿】深度学习:神经网络基础

文章目录

  • 📑引言
  • 一、神经元和感知器
    • 1.1 神经元的基本概念
    • 1.2 感知器模型
  • 二、多层感知器(MLP)
    • 2.1 MLP的基本结构
    • 2.2 激活函数的重要性
    • 2.3 激活函数
    • 2.4 激活函数的选择
  • 三、小结

image.png

📑引言

深度学习是现代人工智能的核心技术之一,而神经网络是深度学习的基础结构。神经网络通过模拟人脑的神经元工作原理,从数据中自动提取特征并进行复杂的模式识别和分类任务。在这篇博客中,我们将详细探讨神经网络的基本概念、构成单元、重要特性以及它们在深度学习中的关键作用。

一、神经元和感知器

1.1 神经元的基本概念

神经元是神经网络的基本计算单元,其灵感来源于生物神经元。生物神经元通过接收输入信号(来自其他神经元或感受器),经过处理后传递输出信号。人工神经元模拟了这一过程,主要由以下部分组成:

  • 输入(Input): 接收来自其他神经元或输入数据的信号。
  • 权重(Weight): 每个输入信号都与一个权重相乘,权重决定了该输入信号的重要性。
  • 加权求和(Weighted Sum): 所有输入信号与对应权重的乘积之和。
  • 激活函数(Activation Function): 将加权求和的结果转换为输出信号。

数学上,一个神经元的输出可以表示为:
image.png
其中,( x_i ) 是输入信号,( w_i ) 是权重,( b ) 是偏置,( f ) 是激活函数。

1.2 感知器模型

感知器(Perceptron)是最简单的人工神经元模型,由Frank Rosenblatt在1958年提出。感知器是一种线性分类器,能够将输入数据分为两个类别。其基本结构如下:

  • 输入层: 接收输入数据,每个输入与一个权重相乘。
  • 加权求和: 将所有加权后的输入信号相加,加上偏置。
  • 激活函数: 使用阶跃函数(Step Function)作为激活函数,将加权求和结果转换为输出。

阶跃函数定义为:
image.png
感知器模型可以表示为:
image.png
感知器的训练过程通过调整权重和偏置,使模型能够正确分类输入数据。感知器的局限性在于它只能处理线性可分的数据集,对于复杂的非线性数据无能为力。

二、多层感知器(MLP)

2.1 MLP的基本结构

多层感知器(Multi-Layer Perceptron,MLP)是由多个感知器层叠组成的神经网络模型。MLP通过引入隐藏层(Hidden Layer),能够处理复杂的非线性数据。MLP的基本结构包括:

  • 输入层: 接收输入数据。
  • 隐藏层: 由多个神经元组成,通过激活函数进行非线性变换。
  • 输出层: 生成最终的输出结果。

每一层的输出作为下一层的输入,层与层之间全连接(Fully Connected),即每个神经元与上一层的所有神经元相连。

2.2 激活函数的重要性

激活函数是MLP中引入非线性的关键,使得神经网络能够拟合复杂的非线性关系。
常见的激活函数包括:

  • Sigmoid函数:

image.png
Sigmoid函数将输入压缩到(0, 1)之间,适用于输出为概率的任务,但容易导致梯度消失问题。

  • Tanh函数:

image.png
Tanh函数将输入压缩到(-1, 1)之间,相比Sigmoid具有零中心,但仍有梯度消失问题。

  • ReLU函数(Rectified Linear Unit):

image.png
ReLU函数解决了梯度消失问题,计算简单,广泛应用于现代神经网络中。但其可能导致部分神经元“死亡”,即在训练过程中输出恒为零。

  • Leaky ReLU函数:

image.png
Leaky ReLU在负轴上保留一部分信息,避免了神经元死亡的问题。
MLP的训练
MLP的训练过程包括前向传播(Forward Propagation)和反向传播(Backpropagation)。前向传播计算每层的输出,反向传播计算误差梯度并更新权重。

  • 前向传播: 从输入层开始,逐层计算输出,直到输出层生成最终结果。
  • 反向传播: 从输出层开始,逐层计算误差梯度,并使用梯度下降法更新权重和偏置。

反向传播的关键是链式法则(Chain Rule),通过链式法则计算每层的梯度:
image.png
其中,( L ) 是损失函数,( y ) 是输出,( w ) 是权重。

2.3 激活函数

激活函数的作用
激活函数在神经网络中起到引入非线性的作用,使得神经网络能够学习和拟合复杂的非线性关系。不同的激活函数具有不同的特性和应用场景。
常见激活函数

  1. Sigmoid函数:

Sigmoid函数将输入值映射到(0, 1)之间,常用于二分类问题的输出层。其数学表达式为:
image.png
**优点:**平滑且连续,输出范围在(0, 1)之间。
**缺点:**容易导致梯度消失问题,训练深层网络时效果不佳。

  1. Tanh函数:

Tanh函数将输入值映射到(-1, 1)之间,常用于隐藏层的激活函数。其数学表达式为:
image.png
**优点:**零中心化,输出范围在(-1, 1)之间。
**缺点:**与Sigmoid函数类似,也容易导致梯度消失问题。

  1. ReLU函数:

ReLU函数是现代神经网络中最常用的激活函数,输出输入值与0的较大者。其数学表达式为:
image.png
**优点:**计算简单,能够有效解决梯度消失问题,提高训练速度。
**缺点:**可能导致部分神经元“死亡”,即在训练过程中输出恒为零。

  1. Leaky ReLU函数:

Leaky ReLU函数是ReLU的变种,在负轴上保留一部分信息,避免神经元死亡的问题。其数学表达式为:
image.png
**优点:**避免神经元死亡,保留负值信息。
**缺点:**需要手动调节参数 ( \alpha )。

2.4 激活函数的选择

激活函数的选择对神经网络的性能有重要影响。
一般来说,隐藏层使用ReLU或其变种(如Leaky ReLU),输出层根据具体任务选择Sigmoid或Tanh函数。对于回归问题,输出层可以直接使用线性激活函数。

三、小结

神经网络是深度学习的基础结构,通过模拟人脑的神经元工作原理,能够从数据中自动提取特征并进行复杂的模式识别和分类任务。本文详细探讨了神经元和感知器、多层感知器(MLP)、激活函数的基本概念和关键技术。希望通过这篇详细的博客,读者能够全面理解神经网络的基础知识,为深入学习和研究深度学习技术打下坚实的基础。

image.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/43393.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

kotlin Flow 学习指南 (三)最终篇

目录 前言Flow生命周期StateFlow 替代LiveDataSharedFlow其他常见应用场景处理复杂、耗时逻辑存在依赖关系的接口请求组合多个接口的数据 Flow使用注意事项总结 前言 前面两篇文章,介绍了Flow是什么,如何使用,以及相关的操作符进阶&#xff…

如何挑选适合的需求池管理系统?10款优质工具分享

本文将分享10款优质需求池管理工具:PingCode、Worktile、Teambition、Epicor Kinetic、TAPD、SAP IBP、Logility、RELEX Solutions、JIRA、明道云。 在管理项目和产品需求时,正确的工具能够大幅提高效率与透明度。如何从众多需求池工具中选择最适合团队的…

自定义类型:联合体

像结构体一样,联合体也是由一个或者多个成员组成,这些成员可以是不同的类型。 联合体类型的声明 编译器只为最⼤的成员分配⾜够的内存空间。联合体的特点是所有成员共⽤同⼀块内存空间。所以联合体也叫:共⽤体。 输出结果: 联合体…

【基于R语言群体遗传学】-16-中性检验Tajima‘s D及连锁不平衡 linkage disequilibrium (LD)

Tajimas D Test 已经开发了几种中性检验,用于识别模型假设的潜在偏差。在这里,我们将说明一种有影响力的中性检验,即Tajimas D(Tajima 1989)。Tajimas D通过比较数据集中的两个𝜃 4N𝜇估计值来…

spark shuffle写操作——UnsafeShuffleWriter

PackedRecordPointer 使用long类型packedRecordPointer存储数据。 数据结构为:[24 bit partition number][13 bit memory page number][27 bit offset in page] LongArray LongArray不同于java中long数组。LongArray可以使用堆内内存也可以使用堆外内存。 Memor…

秋招突击——7/9——字节面经

文章目录 引言正文八股MySQL熟悉吗?讲一下MySQL索引的结构?追问:MySQL为什么要使用B树?在使用MySQL的时候,如何避免索引失效?讲一下MySQL的事物有哪几种特征?MySQL的原子性可以实现什么效果&…

【区块链+跨境服务】粤澳健康码跨境互认系统 | FISCO BCOS应用案例

2020 年突如其来的新冠肺炎疫情,让社会治理体系面临前所未见的考验,如何兼顾疫情防控与复工复产成为社会 各界共同努力的目标。区块链技术作为传递信任的新一代信息基础设施,善于在多方协同的场景中发挥所长,从 而为粤澳两地的疫情…

CSS关于居中的问题

文章目录 1. 行内和块级元素自身相对父控件居中1.1. 块级元素相对父控件居中1.2. 行内元素相对于父控件居中 2. 实现单行文字垂直居中3. 子绝父相实现子元素的水平垂直居中3.1. 方案一3.1.1. 示例 3.2. 方案二3.2.1. 示例 3.3. 方案三(推荐)3.3.1. 示例 3.4. 方案四(了解一下) …

AI大模型知识点大梳理_ai大模型的精度以下哪项描述的准确

AI大模型是什么 AI大模型是指具有巨大参数量的深度学习模型,通常**包含数十亿甚至数万亿个参数。**这些模型可以通过学习大量的数据来提高预测能力,从而在自然语言处理、计算机视觉、自主驾驶等领域取得重要突破。 AI大模型的定义具体可以根据参数规模…

短信验证码研究:公开的短信验证码接口、不需要注册的短信验证码接口

短信验证码研究:公开的短信验证码接口、不需要注册的短信验证码接口 0 说明 本文提供了一个短信验证码接口,主要用于以下场景: 1、用于开发调试 2、用于申请验证码困难的企业和个人 3、用于短信验证码认证还没有通过,但是着急…

DBeaver操作MySQL无法同时执行多条语句的解决方法

DBeaver选择数据库连接,在【驱动属性】中将allowMultiQueries允许执行多条语句置为True

泰迪智能科技大数据实验室产品-实训管理平台介绍

高校大数据实验室通常配备有先进的计算机硬件和软件工具,以及专门的数据库和分析平台,以便研究人员和学生能够进行复杂的数据处理、分析和解释。主要利用大数据技术进行科学研究、技术开发和人才培养。 泰迪智能科技实训管理平台作为教学核心&#xff0c…

JS进阶-构造函数

学习目标: 掌握构造函数 学习内容: 构造函数 构造函数: 封装是面向对象思想中比较重要的一部分,js面向对象可以通过构造函数实现的封装。 同样的将变量和函数组合到了一起并能通过this实现数据的共享,所不同的是借助…

小程序需要进行软件测试吗?小程序测试有哪些测试内容?

在如今移动互联网快速发展的时代,小程序已成为人们生活中不可或缺的一部分。然而,面对日益增长的小程序数量和用户需求,小程序的稳定性和质量问题日益突显。因此,对小程序进行软件测试显得尤为重要。 近期的一项调查显示&#xf…

【架构】分布式与微服务架构解析

分布式与微服务架构解析 一、分布式1、什么是分布式架构2、为什么需要分布式架构3、分布式架构有哪些优势?4、分布式架构有什么劣势?5、分布式架构有哪些关键技术?6、基于分布式架构如何提高其高性能?7、如何基于架构提高系统的稳…

【工具】咸鱼小助手,一款咸鱼之王辅助工具

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~ Github:咸鱼之王的自动化脚本,自动答题、爬塔、领资源等 下载:(密码:9u22) 咸鱼小助手 文档:腾讯文档 视…

软考《信息系统运行管理员》-3.2信息系统设施运维的环境管理

3.2信息系统设施运维的环境管理 1 计算机机房的选址要求 电子计算机机房地理位置 选择水源充足,电子比较稳定可靠,交通通信方便,自然环境清洁的地点要远离产生粉尘、油烟、有害气体以及生产或存储具有腐蚀性、易燃、易爆物品的工厂、仓库、…

3d模型选不中任何东西是什么原因?---模大狮模型网

在进行3D模型设计过程中,有时会遇到无法选择模型中的任何元素的问题。这种情况可能会影响设计师的工作效率和体验,因此了解问题的原因以及如何解决是至关重要的。本文将探讨在3D建模中遇到无法选中模型元素的原因及解决方法。 一、问题原因分析 无法选中…

07浅谈大语言模型可调节参数tempreture

浅谈temperature 什么是temperature? temperature是大预言模型生成文本时常用的两个重要参数。它的作用体现在控制模型输出的确定性和多样性: 控制确定性: temperature参数可以控制模型生成文本的确定性,大部分模型中temperatur…

医疗器械网络安全 | 漏洞扫描、渗透测试没有发现问题,是否说明我的设备是安全的?

尽管漏洞扫描、模糊测试和渗透测试在评估系统安全性方面是非常重要和有效的工具,但即使这些测试没有发现任何问题,也不能完全保证您的医疗器械是绝对安全的。这是因为安全性的评估是一个多维度、复杂且持续的过程,涉及多个方面和因素。以下是…