🧰Helm 的作用
在开始前需要先对 kubernetes Operator 有个简单的认识。
以为我们在编写部署一些简单 Deployment
的时候只需要自己编写一个 yaml 文件然后 kubectl apply
即可。
apiVersion: apps/v1
kind: Deployment
metadata: labels: app: k8s-combat name: k8s-combat
spec: replicas: 1 selector: matchLabels: app: k8s-combat template: metadata: labels: app: k8s-combat spec: containers: - name: k8s-combat image: crossoverjie/k8s-combat:v1 imagePullPolicy: Always resources: limits: cpu: "1" memory: 300Mi requests: cpu: "0.1" memory: 30Mi
kubectl apply -f deployment.yaml
这对于一些并不复杂的项目来说完全够用了,但组件一多就比较麻烦了。
这里以 Apache Pulsar 为例:它的核心组件有:
Broker
Proxy
Zookeeper
Bookkeeper
Prometheus(可选)
Grafana(可选) 等组件,每个组件的启动还有这依赖关系。
必须需要等 Zookeeper 和 Bookkeeper 启动之后才能将流量放进来。
此时如何还继续使用 yaml 文件一个个部署就会非常繁琐,好在社区有提供 Helm 一键安装程序,使用它我们只需要在一个同意的 yaml 里简单的配置一些组件,配置就可以由 helm 来部署整个复杂的 Pulsar 系统。
components: # zookeeper zookeeper: true # bookkeeper bookkeeper: true # bookkeeper - autorecovery autorecovery: true # broker broker: true # functions functions: false # proxy proxy: true # toolset toolset: true # pulsar manager pulsar_manager: false
monitoring: # monitoring - prometheus prometheus: true # monitoring - grafana grafana: true # monitoring - node_exporter node_exporter: true # alerting - alert-manager alert_manager: false
比如在 helm 的 yaml 中我们可以选择使用哪些 components,以及是否启用监控组件。
最后直接使用这个文件进行安装:
helm install pulsar apache/pulsar \--values charts/pulsar/values.yaml \--set namespace=pulsar \--set initialize=true
它就会自动生成各个组件的 yaml 文件,然后统一执行。
所以 helm 的本质上和 kubectl apply yaml
一样的,只是我们在定义 value.yaml 时帮我们处理了许多不需要用户低频修改的参数。
我们可以使用 helm 将要执行的 yaml 输出后人工审核
helm install pulsar apache/pulsar --dry-run --debug > debug.yaml
🤔Operator 是什么
💔Helm 的痛点
Helm 虽然可以帮我们部署或者升级一个大型应用,但他却没法帮我们运维这个应用。
举个例子:比如我希望当 Pulsar Broker 的流量或者内存达到某个阈值后就指定扩容 Broker,闲时再自动回收。
或者某个 Bookkeeper 的磁盘使用率达到阈值后可以自动扩容磁盘,这些仅仅使用 Helm 时都是无法实现的。
以上这些需求我们目前也是通过监控系统发出报警,然后再由人工处理。
其中最大的痛点就是进行升级:
升级ZK
关闭auto recovery
升级Bookkeeper
升级Broker
升级Proxy
开启auto recovery
因为每次升级是有先后顺序的,需要依次观察每个组件运行是否正常才能往后操作。
如果有 Operator 理性情况下下我们只需要更新一下镜像版本,它就可以自动执行以上的所有步骤最后将集群升级完毕。
所以相对于 Helm 来说 Operator 是可以站在一个更高的视角俯视整个应用系统,它能发现系统哪个地方需要它从而直接修复。
💎CRD(Custom Resource Definitions)
而提到 Operator 那就不得不提到 CRD(Custom Resource Definitions)翻译过来就是自定义资源。
这是 kubernetes 提供的一个 API 扩展机制,类似于内置的 Deployment/StatefulSet/Services
资源,CRD 是一种自定义的资源。
这里以我们常用的 prometheus-operator
和 VictoriaMetrics-operator
为例:
Prometheus:
**
Prometheus
**:用于定义 Prometheus 的 Deployment**
Alertmanager
**:用于定义Alertmanager
**
ScrapeConfig
**:用于定会抓取规则
apiVersion: monitoring.coreos.com/v1alpha1
kind: ScrapeConfig
metadata:name: static-confignamespace: my-namespacelabels:prometheus: system-monitoring-prometheus
spec:staticConfigs:- labels:job: prometheustargets:- prometheus.demo.do.prometheus.io:9090
使用时的一个很大区别就是资源的 kind: ScrapeConfig
为自定义的类型。
VictoriaMetrics 的 CRD:
VMPodScrape:Pod 的抓取规则
VMCluster:配置 VM 集群
VMAlert:配置 VM 的告警规则
等等
# vmcluster.yaml
apiVersion: operator.victoriametrics.com/v1beta1
kind: VMCluster
metadata:name: demo
spec:retentionPeriod: "1"replicationFactor: 2vmstorage:replicaCount: 2storageDataPath: "/vm-data"storage:volumeClaimTemplate:spec:resources:requests:storage: "10Gi"resources:limits:cpu: "1"memory: "1Gi"vmselect:replicaCount: 2cacheMountPath: "/select-cache"storage:volumeClaimTemplate:spec:resources:requests:storage: "1Gi"resources:limits:cpu: "1"memory: "1Gi"requests:cpu: "0.5"memory: "500Mi"vminsert:replicaCount: 2
以上是用于创建一个 VM 集群的 CRD 资源,应用之后就会自动创建一个集群。
Operator 原理
Operator 通常是运行在 kubernetes API server 的 webhook
之上,简单来说就是在一些内置资源的关键节点 API-server 会调用我们注册的一个 webhook
,在这个 webhook
中我们根据我们的 CRD 做一些自定义的操作。
理论上我们可以使用任何语言都可以写 Operator,只需要能处理 api-server 的回调即可。
只是 Go 语言有很多成熟的工具,比如常用的 kubebuilder 和 operator-sdk.
他们内置了许多命令行工具,可以帮我们节省需要工作量。
这里以 operator-sdk 为例:
$ operator-sdk create webhook --group cache --version v1alpha1 --kind Memcached --defaulting --programmatic-validation
会直接帮我们创建好一个标准的 operator 项目:
├── Dockerfile
├── Makefile
├── PROJECT
├── api
│ └── v1alpha1
│ ├── memcached_webhook.go
│ ├── webhook_suite_test.go
├── config
│ ├── certmanager
│ │ ├── certificate.yaml
│ │ ├── kustomization.yaml
│ │ └── kustomizeconfig.yaml
│ ├── default
│ │ ├── manager_webhook_patch.yaml
│ │ └── webhookcainjection_patch.yaml
│ └── webhook
│ ├── kustomization.yaml
│ ├── kustomizeconfig.yaml
│ └── service.yaml
├── go.mod
├── go.sum
└── main.go
其中 Makefile 中包含了开发过程中常用的工具链(包括根据声明的结构体自动生成 CRD 资源、部署k8s 环境测试等等)、Dockerfile 等等。
这样我们就只需要专注于开发业务逻辑即可。
因为我前段时间给 https://github.com/open-telemetry/opentelemetry-operator 贡献过两个 feature,所以就以这个 Operator 为例:
它有一个 CRD: kind: Instrumentation
,在这个 CRD 中可以将 OpenTelemetry 的 agent 注入到应用中。
apiVersion: opentelemetry.io/v1alpha1
kind: Instrumentation
metadata: name: instrumentation-test-ordernamespace: test
spec: env: - name: OTEL_SERVICE_NAME value: orderselector: matchLabels: app: order java: image: autoinstrumentation-java:2.4.0-release extensions: - image: autoinstrumentation-java:2.4.0-release dir: /extensions env: - name: OTEL_RESOURCE_ATTRIBUTES value: service.name=order - name: OTEL_INSTRUMENTATION_MESSAGING_EXPERIMENTAL_RECEIVE_TELEMETRY_ENABLED value: "true" - name: OTEL_TRACES_EXPORTER value: otlp - name: OTEL_METRICS_EXPORTER value: otlp - name: OTEL_LOGS_EXPORTER value: none - name: OTEL_EXPORTER_OTLP_ENDPOINT value: http://open-telemetry-opentelemetry-collector.otel.svc.cluster.local:4317 - name: OTEL_EXPORTER_OTLP_COMPRESSION value: gzip - name: OTEL_EXPERIMENTAL_EXPORTER_OTLP_RETRY_ENABLED value: "true"
它的运行规则是当我们的 Pod 在启动过程中会判断 Pod 的注解中是否开启了注入 OpenTelemetry 的配置。
如果开启则会将我们在 CRD 中自定义的镜像里的 javaagent 复制到业务容器中,同时会将下面的那些环境变量也一起加入的业务容器中。
要达到这样的效果就需要我们注册一个回调 endpoint。
mgr.GetWebhookServer().Register("/mutate-v1-pod", &webhook.Admission{ Handler: podmutation.NewWebhookHandler(cfg, ctrl.Log.WithName("pod-webhook"), decoder, mgr.GetClient(), []podmutation.PodMutator{ sidecar.NewMutator(logger, cfg, mgr.GetClient()), instrumentation.NewMutator(logger, mgr.GetClient(), mgr.GetEventRecorderFor("opentelemetry-operator"), cfg), }),})
当 Pod 创建或有新的变更请求时就会回调我们的接口。
func (pm *instPodMutator) Mutate(ctx context.Context, ns corev1.Namespace, pod corev1.Pod) (corev1.Pod, error) { logger := pm.Logger.WithValues("namespace", pod.Namespace, "name", pod.Name)}
在这个接口中我们就可以拿到 Pod 的信息,然后再获取 CRD Instrumentation
做我们的业务逻辑。
var otelInsts v1alpha1.InstrumentationList
if err := pm.Client.List(ctx, &otelInsts, client.InNamespace(ns.Name)); err != nil { return nil, err
}// 从 CRD 中将数据复制到业务容器中。
pod.Spec.InitContainers = append(pod.Spec.InitContainers, corev1.Container{Name: javaInitContainerName,Image: javaSpec.Image,Command: []string{"cp", "/javaagent.jar", javaInstrMountPath + "/javaagent.jar"},Resources: javaSpec.Resources,VolumeMounts: []corev1.VolumeMount{{Name: javaVolumeName,MountPath: javaInstrMountPath,}},
})for i, extension := range javaSpec.Extensions {pod.Spec.InitContainers = append(pod.Spec.InitContainers, corev1.Container{Name: initContainerName + fmt.Sprintf("-extension-%d", i),Image: extension.Image,Command: []string{"cp", "-r", extension.Dir + "/.", javaInstrMountPath + "/extensions"},Resources: javaSpec.Resources,VolumeMounts: []corev1.VolumeMount{{Name: javaVolumeName,MountPath: javaInstrMountPath,}},})
}
不过需要注意的是想要在测试环境中测试 operator 是需要安装一个 cert-manage,这样
webhook
才能正常的回调。
要使得 CRD 生效,我们还得先将 CRD 安装进 kubernetes 集群中,不过这些 operator-sdk 这类根据已经考虑周到了。
我们只需要定义好 CRD 的结构体:
然后使用 Makefile 中的工具 make bundle
就会自动将结构体转换为 CRD。
参考链接:
https://github.com/VictoriaMetrics/operator
https://github.com/prometheus-operator/prometheus-operator
往期推荐
如何找到并快速上手一个开源项目
OpenTelemetry 深度定制:跨服务追踪的实战技巧
从 Prometheus 到 OpenTelemetry: 指标监控的演进与实践
从 Dapper 到 OpenTelemetry:分布式追踪的演进之旅
实操 OpenTelemetry:通过 Demo 掌握微服务监控的艺术
点分享
点收藏
点点赞
点在看