目录
1 -> 红黑树
1.1 -> 红黑树的概念
1.2 -> 红黑树的性质
1.3 -> 红黑树节点的定义
1.4 -> 红黑树的结构
1.5 -> 红黑树的插入操作
1.6 -> 红黑树的验证
1.8 -> 红黑树与AVL树的比较
2 -> 红黑树模拟实现STL中的map与set
2.1 -> 红黑树的迭代器
2.2 -> 改造红黑树
2.3 -> map的模拟实现
2.4 -> set的模拟实现
1 -> 红黑树
1.1 -> 红黑树的概念
红黑树,是一种二叉搜索树,但在每个节点上增加了一个存储位表示节点的颜色,可以是Red或Black。通过对任何一条从根到叶子的路径上各个节点着色方式的限制,红黑树确保没有一条路径会比其他路径长出两倍,因而是接近平衡的。
1.2 -> 红黑树的性质
- 每个节点不是红色就是黑色。
- 根节点是黑色的。
- 如果一个节点是红色的,则它的两个孩子节点是黑色的。
- 对于每个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点。
- 每个叶子节点都是黑色的(此处的叶子节点指空节点)。
1.3 -> 红黑树节点的定义
#define _CRT_SECURE_NO_WARNINGS 1#include <iostream>
using namespace std;// 节点的颜色
enum Color
{ RED, BLACK
};// 红黑树节点的定义
template<class ValueType>
struct RBTreeNode
{RBTreeNode(const ValueType& data = ValueType(),Color color = RED): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _color(color){}RBTreeNode<ValueType>* _pLeft; // 节点的左孩子RBTreeNode<ValueType>* _pRight; // 节点的右孩子RBTreeNode<ValueType>* _pParent; // 节点的双亲(红黑树需要旋转,为了实现简单给出该字段)ValueType _data; // 节点的值域Color _color; // 节点的颜色
};
1.4 -> 红黑树的结构
为了后续实现关联式容器更加简单,红黑树的实现中增加一个头节点,因为根节点必须是黑色的,为了与根节点区分开,将头节点给成黑色,并且让头节点的pParent域指向红黑树的根节点,pLeft域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点。
1.5 -> 红黑树的插入操作
红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可以分为两步:
1. 按照二叉搜索树的树规则插入新节点。
template<class ValueType>
struct RBTree
{bool Insert(const ValueType& data){PNode& pRoot = GetRoot();if (nullptr == pRoot){pRoot = new Node(data, BLACK);// 根的双亲为头节点pRoot->_pParent = _pHead;_pHead->_pParent = pRoot;}else{// 1. 按照二叉搜索的树方式插入新节点// 2. 检测新节点插入后,红黑树的性质是否造到破坏,// 若满足直接退出,否则对红黑树进行旋转着色处理}// 根节点的颜色可能被修改,将其改回黑色pRoot->_color = BLACK;_pHead->_pLeft = LeftMost();_pHead->_pRight = RightMost();return true;}
private:PNode& GetRoot(){return _pHead->_pParent;}// 获取红黑树中最小节点,即最左侧节点PNode LeftMost();// 获取红黑树中最大节点,即最右侧节点PNode RightMost();private:PNode _pHead;
}
2. 检测新节点插入后,红黑树的性质是否遭到破坏。
因为新节点的默认颜色为红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树的任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三,即不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:
- 情况一:cur为红,p为红,g为黑,u存在且为红。
注意:此处看到的树可能是一棵完整的树,也可能是一棵子树。
如果g是根节点,调整完成后,需要将g改为黑色。
如果g是子树,g一定有双亲,且g的双亲如果是红色,就需要继续向上调整。
cur和p均为红,违反了性质三。
解决方法:将p、u改为黑,g改为红,然后把g当成cur,继续向上调整。
- 情况二:cur为红,p为红,g为黑,u不存在/u存在且为黑。
说明:
- 如果u节点不存在,则cur一定是新插入节点,因为如果cur不是新插入节点,则cur和p一定有一个节点的颜色是黑色,就不满足性质4:每条路径黑色节点个数相同。
- 如果u节点存在,则其一定是黑色的,那么cur节点原来的颜色一定是黑色的,现在看到其是红色的原因是因为cur的子树在调整的过程中将cur节点的颜色由黑色改成了红色。
p为g的左孩子,cur为p的左孩子,则进行右单旋转。
p为g的右孩子,cur为p的右孩子,则进行左单旋转。
p、g变色——p变黑,g变红。
- 情况三:cur为红,p为红,g为黑,u不存在/u存在且为黑。
p为g的左孩子,cur为p的右孩子,则针对p进行左单旋转。
p为g的右孩子,cur为p的左孩子,则针对p进行右单旋转。
则转换成情况二。
针对每种情况进行相应的处理即可。
bool Insert(const ValueType& data)
{// ...// 新节点插入后,如果其双亲节点的颜色为空色,则违反性质3:不能有连在一起的红色结点while (pParent && RED == pParent->_color){// 注意:grandFather一定存在// 因为pParent存在,且不是黑色节点,则pParent一定不是根,则其一定有双亲PNode grandFather = pParent->_pParent;// 先讨论左侧情况if (pParent == grandFather->_pLeft){PNode unclue = grandFather->_pRight;// 情况三:叔叔节点存在,且为红if (unclue && RED == unclue->_color){pParent->_color = BLACK;unclue->_color = BLACK;grandFather->_color = RED;pCur = grandFather;pParent = pCur->_pParent;}else{// 情况五:叔叔节点不存在,或者叔叔节点存在且为黑if (pCur == pParent->_pRight){_RotateLeft(pParent);swap(pParent, pCur);}// 情况五最后转化成情况四grandFather->_color = RED;pParent->_color = BLACK;_RotateRight(grandFather);}}else{// …}}// ...
}
1.6 -> 红黑树的验证
红黑树的检测分为两步:
- 检测其是否满足二叉搜索树(中序遍历是否为有序序列)。
- 检测其是否满足红黑树的性质。
bool IsValidRBTree(){PNode pRoot = GetRoot();// 空树也是红黑树if (nullptr == pRoot)return true;// 检测根节点是否满足情况if (BLACK != pRoot->_color){cout << "违反红黑树性质二:根节点必须为黑色" << endl;return false;}// 获取任意一条路径中黑色节点的个数size_t blackCount = 0;PNode pCur = pRoot;while (pCur){if (BLACK == pCur->_color)blackCount++;pCur = pCur->_pLeft;}// 检测是否满足红黑树的性质,k用来记录路径中黑色节点的个数size_t k = 0;return _IsValidRBTree(pRoot, k, blackCount);}bool _IsValidRBTree(PNode pRoot, size_t k, const size_t blackCount){//走到null之后,判断k和black是否相等if (nullptr == pRoot){if (k != blackCount){cout << "违反性质四:每条路径中黑色节点的个数必须相同" << endl;return false;}return true;}// 统计黑色节点的个数if (BLACK == pRoot->_color)k++;// 检测当前节点与其双亲是否都为红色PNode pParent = pRoot->_pParent;if (pParent && RED == pParent->_color && RED == pRoot->_color){cout << "违反性质三:没有连在一起的红色节点" << endl;return false;}return _IsValidRBTree(pRoot->_pLeft, k, blackCount) &&_IsValidRBTree(pRoot->_pRight, k, blackCount);}
1.8 -> 红黑树与AVL树的比较
红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O(n),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以在实际运用中红黑树更多。
2 -> 红黑树模拟实现STL中的map与set
2.1 -> 红黑树的迭代器
迭代器的好处是可以方便遍历,是数据结构的底层实现与用户透明。如果想要给红黑树增加迭代器,需要考虑以下问题:
- begin()和end()
STL明确规定,begin()与end()代表的是一段前闭后开的区间,而对红黑树进行中序遍历后,可以得到一个有序的序列,因此:begin()可以放在红黑树中最小节点(即最左侧节点)的位置,end()放在最大节点(最右侧节点)的下一个位置,关键是最大节点的下一个位置在哪里呢?能否给成nullptr呢?
答案是行不通的,因为对end()位置的迭代器进行--操作,必须要能找到最后一个元素,此处就不行,因此最好的方式是将end()放在头节点的位置:
- operator++()与operator--()
// 找迭代器的下一个节点,下一个节点肯定比其大void Increasement(){//分两种情况讨论:_pNode的右子树存在和不存在// 右子树存在if (_pNode->_pRight){// 右子树中最小的节点,即右子树中最左侧节点_pNode = _pNode->_pRight;while (_pNode->_pLeft)_pNode = _pNode->_pLeft;}else{// 右子树不存在,向上查找,直到_pNode != pParent->rightPNode pParent = _pNode->_pParent;while (pParent->_pRight == _pNode){_pNode = pParent;pParent = _pNode->_pParent;}// 特殊情况:根节点没有右子树if (_pNode->_pRight != pParent)_pNode = pParent;}}// 获取迭代器指向节点的前一个节点void Decreasement(){//分三种情况讨论:_pNode 在head的位置,_pNode 左子树存在,_pNode 左子树不存在// 1. _pNode 在head的位置,--应该将_pNode放在红黑树中最大节点的位置if (_pNode->_pParent->_pParent == _pNode && _pNode->_color == RED)_pNode = _pNode->_pRight;else if (_pNode->_pLeft){// 2. _pNode的左子树存在,在左子树中找最大的节点,即左子树中最右侧节点_pNode = _pNode->_pLeft;while (_pNode->_pRight)_pNode = _pNode->_pRight;}else{// _pNode的左子树不存在,只能向上找PNode pParent = _pNode->_pParent;while (_pNode == pParent->_pLeft){_pNode = pParent;pParent = _pNode->_pParent;}_pNode = pParent;}}
2.2 -> 改造红黑树
#pragma once// set ->key
// map ->key/valueenum Colour
{RED,BLACK
};template<class T>
struct RBTreeNode
{RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;T _data;Colour _col;RBTreeNode(const T& data):_left(nullptr), _right(nullptr), _parent(nullptr), _data(data), _col(RED){}
};template<class T>
struct __TreeIterator
{typedef RBTreeNode<T> Node;typedef __TreeIterator<T> Self;Node* _node;__TreeIterator(Node* node):_node(node){}T& operator*(){return _node->_data;}T* operator->(){return &_node->_data;}Self& operator--();Self& operator++(){if (_node->_right){// 下一个就是右子树的最左节点Node* cur = _node->_right;while (cur->_left){cur = cur->_left;}_node = cur;}else{// 左子树 根 右子树// 右为空,找孩子是父亲左的那个祖先Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_right){cur = parent;parent = parent->_parent;}_node = parent;}return *this;}bool operator!=(const Self& s){return _node != s._node;}bool operator==(const Self& s){return _node == s._node;}
};// set->RBTree<K, K, SetKeyOfT> _t;
// map->RBTree<K, pair<K, T>, MapKeyOfT> _t;
template<class K, class T, class KeyOfT>
class RBTree
{typedef RBTreeNode<T> Node;
public:typedef __TreeIterator<T> iterator;iterator begin(){Node* cur = _root;while (cur && cur->_left){cur = cur->_left;}return iterator(cur);}iterator end(){return iterator(nullptr);}pair<iterator, bool> Insert(const T& data){if (_root == nullptr){_root = new Node(data);_root->_col = BLACK;return make_pair(iterator(_root), true);}Node* parent = nullptr;Node* cur = _root;KeyOfT kot;while (cur){if (kot(cur->_data) < kot(data)){parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data)){parent = cur;cur = cur->_left;}else{return make_pair(iterator(cur), false);}}// 新增节点给红色cur = new Node(data);Node* newnode = cur;cur->_col = RED;if (kot(parent->_data) < kot(data)){parent->_right = cur;cur->_parent = parent;}else{parent->_left = cur;cur->_parent = parent;}while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){// g// p u// cNode* uncle = grandfather->_right;if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上更新处理cur = grandfather;parent = cur->_parent;}else{if (cur == parent->_left){// 单旋// g// p// cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{// 双旋// g// p// cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else // parent == grandfather->_right{// g// u p // c//Node* uncle = grandfather->_left;if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{if (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{// g// u p // c//RotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return make_pair(iterator(newnode), true);}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;subR->_left = parent;Node* parentParent = parent->_parent;parent->_parent = subR;if (subRL)subRL->_parent = parent;if (_root == parent){_root = subR;subR->_parent = nullptr;}else{if (parentParent->_left == parent){parentParent->_left = subR;}else{parentParent->_right = subR;}subR->_parent = parentParent;}}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;Node* parentParent = parent->_parent;subL->_right = parent;parent->_parent = subL;if (_root == parent){_root = subL;subL->_parent = nullptr;}else{if (parentParent->_left == parent){parentParent->_left = subL;}else{parentParent->_right = subL;}subL->_parent = parentParent;}}void InOrder(){_InOrder(_root);cout << endl;}void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_kv.first << " ";_InOrder(root->_right);}// 根节点->当前节点这条路径的黑色节点的数量bool Check(Node* root, int blacknum, const int refVal){if (root == nullptr){//cout << balcknum << endl;if (blacknum != refVal){cout << "存在黑色节点数量不相等的路径" << endl;return false;}return true;}if (root->_col == RED && root->_parent->_col == RED){cout << "有连续的红色节点" << endl;return false;}if (root->_col == BLACK){++blacknum;}return Check(root->_left, blacknum, refVal)&& Check(root->_right, blacknum, refVal);}bool IsBalance(){if (_root == nullptr)return true;if (_root->_col == RED)return false;//参考值int refVal = 0;Node* cur = _root;while (cur){if (cur->_col == BLACK){++refVal;}cur = cur->_left;}int blacknum = 0;return Check(_root, blacknum, refVal);}int Height(){return _Height(_root);}int _Height(Node* root){if (root == nullptr)return 0;int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}size_t Size(){return _Size(_root);}size_t _Size(Node* root){if (root == NULL)return 0;return _Size(root->_left)+ _Size(root->_right) + 1;}Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return NULL;}private:Node* _root = nullptr;
};
2.3 -> map的模拟实现
map的底层结构就是红黑树,因此在map中直接封装一棵红黑树,然后将其接口包装下即可。
#pragma once
#include"RBTree.h"namespace fyd
{template<class K, class V>class map{public:struct MapKeyOfT{const K& operator()(const pair<K, V>& kv){return kv.first;}};// 对类模板取内嵌类型,加typename告诉编译器这里是类型typedef typename RBTree<K, pair<K, V>, MapKeyOfT>::iterator iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}V& operator[](const K& key){pair<iterator, bool> ret = insert(make_pair(key, V()));return ret.first->second;}pair<iterator, bool> insert(const pair<K, V>& kv){return _t.Insert(kv);}private:RBTree<K, pair<K, V>, MapKeyOfT> _t;};
}
2.4 -> set的模拟实现
set的底层为红黑树,因此只需在set内部封装一棵红黑树,即可将该容器实现出来。
#pragma once
#include"RBTree.h"namespace fyd
{template<class K>class set{public:struct SetKeyOfT{const K& operator()(const K& key){return key;}};typedef typename RBTree<K, K, SetKeyOfT>::iterator iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}pair<iterator, bool> insert(const K& key){return _t.Insert(key);}private:RBTree<K, K, SetKeyOfT> _t;};
}
感谢各位大佬支持!!!
互三啦!!!