第241题| 确定极限中参数问题 | 武忠祥老师每日一题

解题思路:确定极限中的参数的方法是求这个极限;求极限根据类型选方法

 \frac{0}{0} 形可以用到三种方法:洛必达,等价,泰勒。

先观察题目,将xe^{x}看成一个整体,同时e^{-\frac{x^{2}e^{2x}}{2}}=e^{-\frac{(xe^{x})^{2}}{2}},并令xe^{x}=t,整理之后如下:

\lim_{x\rightarrow 0}\frac{cost-e^{-\frac{t^{2}}{2}}}{x^{a}}

这里x^{a}也要想办法弄成xe^{x}的形式,例如(xe^{x})^{a},在x趋于0的情况下,(xe^{x})^{a}=x^{a},所以最终可以代换成这样:
\lim_{t\rightarrow 0}\frac{cost-e^{-\frac{t^{2}}{2}}}{t^{a}}

判断类型,这同样是一个 \frac{0}{0} 形,在这里有两种方法来解决:

一:洛必达

\lim_{t\rightarrow 0}\frac{cost-e^{-\frac{t^{2}}{2}}}{t^{a}}=\lim_{t\rightarrow 0}\frac{-sint+e^{-\frac{t^{2}}{2}}t}{at^{a-1}},写到这一步,有人可能想到在加减法中使用等价无穷小,把-sint 换成-t来做,但是这个结论是有条件的:代换之后的数不能等价

而这里\lim_{}\frac{-t}{te^{-\frac{t^{2}}{2}}}=-1是等价的 ,所以这里不能同价代换。接着洛必达也很麻烦,那接下来怎么做呢?

我们说:有条件要上,没有条件创造条件也要上。这里使用+t -t来构建式子。

\lim_{t\rightarrow 0}\frac{-sint+e^{-\frac{t^{2}}{2}}t}{at^{a-1}}=\lim_{t\rightarrow 0}\frac{t-sint+e^{-\frac{t^{2}}{2}}t-t}{at^{a-1}}=\lim_{t\rightarrow 0}\frac{t-sint+(e^{-\frac{t^{2}}{2}}-1)t}{at^{a-1}},

分子使用泰勒展开:

t-sint=\frac{1}{6}t^{3}              e^{-\frac{t^{2}}{2}}-1=-\frac{t^{2}}{2};

整理得:

,分子两项显然不等价,可以代换。

要想极限存在,a-1=3,a=4,答案得解。

二:泰勒公式

\lim_{t\rightarrow 0}\frac{cost-e^{-\frac{t^{2}}{2}}}{t^{a}}=\lim_{t\rightarrow 0}\frac{1-\frac{t^{2}}{2}+\frac{t^{4}}{4!}-(1-\frac{t^{2}}{2}+\frac{\frac{t^{4}}{4}}{2})+o(t^{4})}{t^{a}}=\lim_{t\rightarrow 0}\frac{\frac{t^{4}}{4!}-\frac{t^{4}}{8}+o(t^{4})}{t^{a}}=\lim_{t\rightarrow 0}\frac{\frac{t^{4}}{12}+o(t^{4})}{t^{a}}

a=4;

前面两种是直接法,我们知道选择题还有一种方法是排除法。

三:排除法

\lim_{t\rightarrow 0}\frac{cost-e^{-\frac{t^{2}}{2}}}{t^{a}},分子是偶函数,偶函数在0点的泰勒展开式是偶次项,不可能是奇数项。因为分母要除以一个a次项,所以a只能是偶数,排除B和D。

A选项比较好计算,先看a对不对。将a=2带入到式子中去。

\lim_{t\rightarrow 0}\frac{cost-e^{-\frac{t^{2}}{2}}}{t^{2}}

=\lim_{t\rightarrow 0}\frac{cost-1+1-e^{-\frac{t^{2}}{2}}}{t^{2}}

=\lim_{t\rightarrow 0}\frac{cost-1}{t^{2}}+\lim_{t\rightarrow 0}\frac{1-e^{-\frac{t^{2}}{2}}}{t^{2}}注意:这里要拆开不能直接无穷小替换,因为两个替换后的值相除极限为-1,是等价的,为什么前面不用-1+1来做,是因为这里分母的次数是2是确定的,拆开后极限依然存在,所以要拆开。)

=-\frac{1}{2}+\frac{1}{2}

=0

而题目说的是极限不为0,所以A是错的,答案选C

总结知识点:

1.选择题一般是两种方法:一.直接法。二.排除法

2.该题的类型是:确定极限中的参数

解题方法是求这个极限---求极限要根据类型选方法

 \frac{0}{0} 形求极限可以用到三种方法:洛必达等价泰勒

3.本题使用的泰勒公式:

sinx = 1-\frac{x^{3}}{6}+o(x^{3})

cosx=1-\frac{x^{2}}{2}+\frac{x^{4}}{4}+o(x^{4})

e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+o(x^{3})

4.常见式子:

x-sinx=\frac{x^{3}}{6}

cosx -1 =-\frac{x^{2}}{2}

e^{x}-1=x

5.常见构建方式:+1-1。+x-x。

6.等价无穷小替换规则:

7.偶函数在0点处的泰勒展开式一定是偶次项。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/42646.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql怎么调整缓冲区大小

MySQL中调整缓冲区大小是数据库性能优化的重要一环。缓冲区大小直接影响了数据库的读写性能和响应速度。以下是一些常见的MySQL缓冲区及其调整方法: 一、InnoDB缓冲池(InnoDB Buffer Pool) InnoDB缓冲池是InnoDB存储引擎用来缓存表数据和索…

代码随想录第7天 454 、 383 、15、18

代码随想录第7天 454. 四数相加 II 思路就是先统计nums1和num2各个元素之和出现的次数&#xff0c;然后遍历num3和nums4各个元素之和&#xff0c;看其相反数是否在map中&#xff0c;若在加上出现次数 class Solution { public: int fourSumCount(vector<int> &num…

nginx.conf配置文件

1、全局模块 worker_processes 1; 工作进程数&#xff0c;一般设置成服务器内核数的2倍&#xff08;一般不超过8个&#xff0c;超过8个反而会降低性能&#xff0c;一般是4个&#xff0c;1-2个也可以&#xff09; 处理进程的过程必然涉及配置文件和展示页面&#xff0c;也就是…

高斯过程的定义

高斯过程 1. 高斯过程的定义2. 协方差矩阵的构建3. 协方差矩阵的性质3.1. 计算挑战3.2. 解决方法 1. 高斯过程的定义 高斯过程可以看作是对函数的分布&#xff0c;它假定任何有限数量的函数值的集合服从一个多元高斯分布。给定输入数据点集合 { x 1 , x 2 , … , x n } \left…

2024.7.9作业

1、提示并输入一个字符串&#xff0c;统计该字符串中字母、数字、空格以及其他字符的个数 #include <stdio.h> #include <string.h> int main(int argc,const char *argv[]) { char arr[30]{0}; int zm0,kg0,sz0,qt0; printf("请输入字符串&…

OpenStack是一个开源的云计算平台

OpenStack是一个开源的云计算平台&#xff0c;由多个组件组成&#xff0c;这些组件协同工作&#xff0c;提供包括计算、网络、存储和身份服务在内的基础设施即服务(IaaS)。OpenStack最初由NASA和Rackspace合作开发&#xff0c;目的是创建一个开放源代码的云操作系统。 OpenSta…

智慧光伏一站式解决方案

光伏电站智慧化管理平台&#xff0c;将现代先进的数字信息技术、通信技术、互联网技术、云计算技术、大数据挖掘技术与光伏技术高度融合而形成。可以满足光伏企业对电站的高发电量、低初始投资、低运维成本等需求&#xff0c;从开发到运维的25年生命周期内&#xff0c;实现高收…

使用clion刷leetcode

如何优雅的使用clion刷leetcode 安装插件&#xff1a;LeetCode Editor) 插件配置&#xff1a; 这样我们每打开一个项目&#xff0c;就会创建类似的文件 我们的项目结构&#xff1a; 我们在题解文件中导入头文件myHeader.h并将新建的文件添加到cmakelists.txt文件&#xff0c;…

2024前端面试真题【JS篇】

DOM DOM&#xff1a;文本对象模型&#xff0c;是HTML和XML文档的编程接口。提供了对文档的结构化的表述&#xff0c;并定义可一种方式可以使从程序中对该结构进行访问&#xff0c;从而改变文档的结构、样式和内容。 DOM操作 创建节点&#xff1a;document.createElement()、do…

hnust 1965: 深度优先搜索

hnust 1965: 深度优先搜索 题目描述 输入一个图&#xff0c;用邻接矩阵存储&#xff08;实际上也可以选择邻接表&#xff09;&#xff0c;并实现DFSTraverse操作。 拷贝前面已经实现的代码&#xff0c;主函数必须如下&#xff0c;完成剩下的部分。 int main() { Graph g; Cre…

RTOS系统 -- 调试大法之FreeRTOS在M4上实现coredump功能

FreeRTOS内核崩溃&#xff08;coredump&#xff09;及异常打印技术 技术背景 在嵌入式系统中&#xff0c;FreeRTOS是一款广泛使用的实时操作系统。FreeRTOS本身并不包含默认的coredump机制&#xff0c;但我们可以通过自定义异常处理函数来实现异常打印和coredump功能。通过捕…

了解PPO算法(Proximal Policy Optimization)

Proximal Policy Optimization (PPO) 是一种强化学习算法&#xff0c;由 OpenAI 提出&#xff0c;旨在解决传统策略梯度方法中策略更新过大的问题。PPO 通过引入限制策略更新范围的机制&#xff0c;在保证收敛性的同时提高了算法的稳定性和效率。 PPO算法原理 PPO 算法的核心…

Oracle数据库自带的内置表和视图、常用内部视图

文章目录 一.Oracle数据库自带的内置表和视图1.dba_开头表2.user_开头表3.v$开头表4.all_开头表5.session_开头表6.index_开头表 三.按组分的几组重要的性能视图1.System的over view2.某个session的当前情况3.SQL的情况4.Latch/lock/ENQUEUE5.IO方面的 分类类别关系群集、表、视…

【docker 把系统盘空间耗没了!】windows11 更改 ubuntu 子系统存储位置

系统&#xff1a;win11 ubuntu 22 子系统&#xff0c;docker 出现问题&#xff1a;系统盘突然没空间了&#xff0c;一片红 经过排查&#xff0c;发现 AppData\Local\packages\CanonicalGroupLimited.Ubuntu22.04LTS_79rhkp1fndgsc\ 这个文件夹竟然有 90GB 下面提供解决办法 步…

Spring-AOP(二)

作者&#xff1a;月下山川 公众号&#xff1a;月下山川 1、什么是AOP AOP&#xff08;Aspect Oriented Programming&#xff09;是一种设计思想&#xff0c;是软件设计领域中的面向切面编程&#xff0c;它是面向对象编程的一种补充和完善&#xff0c;它以通过预编译方式和运行期…

【课程总结】Day13(下):人脸识别和MTCNN模型

前言 在上一章课程【课程总结】Day13(上):使用YOLO进行目标检测,我们了解到目标检测有两种策略,一种是以YOLO为代表的策略:特征提取→切片→分类回归;另外一种是以MTCNN为代表的策略:先图像切片→特征提取→分类和回归。因此,本章内容将深入了解MTCNN模型,包括:MTC…

CountDownLatch 是 Java 中的一个同步辅助工具类

下面是一个使用 CountDownLatch 的案例分析&#xff0c;我们将通过一个简单的示例来展示如何使用 CountDownLatch 来同步多个线程的操作。 ### 场景描述 假设我们有一个任务&#xff0c;需要从多个数据源&#xff08;比如多个数据库表或文件&#xff09;中读取数据&#xff0c…

使用jdk11运行javafx程序和jdk11打包jre包含javafx模块

我们都知道jdk11是移除了javafx的,如果需要使用javafx,需要单独下载。 这就导致我们使用javafx开发的桌面程序使用jdk11时提示缺少javafx依赖。但这是可以通过下面的方法解决。 一,使用jdk11运行javafx程序 我们可以通过设置vmOptions来使用jdk11运行javafx程序 1,添加j…

【RAG KG】GraphRAG开源:查询聚焦摘要的图RAG方法

前言 传统的 RAG 方法在处理针对整个文本语料库的全局性问题时存在不足&#xff0c;例如查询&#xff1a;“数据中的前 5 个主题是什么&#xff1f;” 对于此类问题&#xff0c;是因为这类问题本质上是查询聚焦的摘要&#xff08;Query-Focused Summarization, QFS&#xff09…

嵌入式单片机,两者有什么关联又有什么区别?

在开始前刚好我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「嵌入式的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“666”之后私信回复“666”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&#xff01;使用单片机是嵌入式系统的…