1、背景:
卷积神经网络的出现,网络参数量大大减低,使得几十层的深层网络成为可能。然而,在残差网络出现之前,网络的加深使得网络训练变得非常不稳定,甚至出现网络长时间不更新或者不收敛的情形,同时网络对超参数比较敏感,超参数的微量扰动也会导致网络的训练轨迹完全改变。
2、提出
2015 年,Google 研究人员Sergey Ioffe等提出了一种参数标准化(Normalize)的手段,并基于参数标准化设计了 Batch Nomalization(简称 BatchNorm或 BN)层 。BN层提出后:
1)使得网络的超参数的设定更加自由,比如更大的学习率,更随意的网络初始化等,同时网络的收敛速度更快,性能也更好。
2)广泛地应用在各种深度网络模型上,卷积层、BN 层,ReLU 层、池化层一度成为网络模型的标配单元,通过堆叠 Conv-BN-ReLU-Pooling 方式往往可以获得不错的模型性能。
3、原理
网络层的输入x分布相近,并且分布在较小范围内时(如 0 附近),更有利于函数的迭代优化。那么如何保证输入x的分布相近呢?
数据标准化可以实现此目的,通过数据标准化操作可以将数据x映射x ^
很容易很看出来:上面的公式表示的是正太分布。也就是说,通过上面的公式计算,可以将原本随机分布的输入数据x,转化成按正态分布分布的数据x ^ ,从而使得输入网络的数据分布较近,有利于网络的迭代优化。
4、计算
5、Scale and Shift