理解算法复杂度:空间复杂度详解

引言

在计算机科学中,算法复杂度是衡量算法效率的重要指标。时间复杂度空间复杂度是算法复杂度的两个主要方面。在这篇博客中,我们将深入探讨空间复杂度,了解其定义、常见类型以及如何进行分析。空间复杂度是衡量算法在执行过程中所需内存空间的重要指标。


什么是空间复杂度?

空间复杂度是指算法在执行过程中所需的内存空间随输入规模增长的变化情况。它通过**大O符号(Big O Notation)**来表示,用于描述算法在最坏情况下的内存使用情况。

常见的空间复杂度

  1. 常数空间复杂度 O(1):算法所需的内存空间与输入规模无关,始终保持不变。
  2. 线性空间复杂度 O(n):算法所需的内存空间与输入规模成正比。
  3. 平方空间复杂度 O(n^2):算法所需的内存空间与输入规模的平方成正比。

空间复杂度分析方法

例子:递归斐波那契数列

递归实现斐波那契数列的空间复杂度是O(n),因为递归调用栈的深度为n。

public class Fibonacci {/*** 计算斐波那契数列的第n项* @param n 第n项* @return 斐波那契数列的第n项*/public static int fibonacci(int n) {if (n <= 1) {return n;}return fibonacci(n - 1) + fibonacci(n - 2);}public static void main(String[] args) {int n = 10;System.out.println("斐波那契数列的第" + n + "项是: " + fibonacci(n));}
}

例子:动态规划斐波那契数列

动态规划实现斐波那契数列的空间复杂度是O(n),因为需要一个数组来存储中间结果。

public class FibonacciDP {/*** 使用动态规划计算斐波那契数列的第n项* @param n 第n项* @return 斐波那契数列的第n项*/public static int fibonacci(int n) {if (n <= 1) {return n;}int[] fib = new int[n + 1];fib[0] = 0;fib[1] = 1;for (int i = 2; i <= n; i++) {fib[i] = fib[i - 1] + fib[i - 2];}return fib[n];}public static void main(String[] args) {int n = 10;System.out.println("斐波那契数列的第" + n + "项是: " + fibonacci(n));}
}

图解空间复杂度

常见空间复杂度对比图

在这里插入图片描述


常见算法的空间复杂度

排序算法

  • 冒泡排序:O(1)
  • 选择排序:O(1)
  • 插入排序:O(1)
  • 快速排序:O(log n)
  • 归并排序:O(n)

搜索算法

  • 线性搜索:O(1)
  • 二分搜索:O(1)

其他算法

  • 斐波那契数列(递归):O(n)
  • 斐波那契数列(动态规划):O(n)

总结

理解空间复杂度是评估算法内存效率的关键。通过分析算法的空间复杂度,我们可以选择最合适的算法来解决特定问题。在实际应用中,合理选择算法可以显著提高系统性能。


参考资料

  1. Introduction to Algorithms by Thomas H. Cormen
  2. GeeksforGeeks - Space Complexity
  3. Big O Cheat Sheet

希望这篇博客能帮助你更好地理解空间复杂度。如果你喜欢这篇文章,请给我点赞,并点击关注,以便第一时间获取更多优质内容!谢谢你的支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/42023.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

昇思25天学习打卡营第19天|Diffusion扩散模型

学AI还能赢奖品&#xff1f;每天30分钟&#xff0c;25天打通AI任督二脉 (qq.com) Diffusion扩散模型 本文基于Hugging Face&#xff1a;The Annotated Diffusion Model一文翻译迁移而来&#xff0c;同时参考了由浅入深了解Diffusion Model一文。 本教程在Jupyter Notebook上成…

昇思MindSpore学习笔记5-02生成式--RNN实现情感分类

摘要&#xff1a; 记录MindSpore AI框架使用RNN网络对自然语言进行情感分类的过程、步骤和方法。 包括环境准备、下载数据集、数据集加载和预处理、构建模型、模型训练、模型测试等。 一、概念 情感分类。 RNN网络模型 实现效果&#xff1a; 输入: This film is terrible 正…

放大镜案例

放大镜 <!DOCTYPE html> <html lang"zh-cn"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>商品放大镜</title><link rel&qu…

如何使用allure生成测试报告

第一步下载安装JDK1.8&#xff0c;参考链接JDK1.8下载、安装和环境配置教程-CSDN博客 第二步配置allure环境&#xff0c;参考链接allure的安装和使用(windows环境)_allure windows-CSDN博客 第三步&#xff1a; 第四步&#xff1a; pytest 查看目前运行的测试用例有无错误 …

如何使用 pytorch 创建一个神经网络

我已发布在&#xff1a;如何使用 pytorch 创建一个神经网络 SapientialM.Github.io 构建神经网络 1 导入所需包 import os import torch from torch import nn from torch.utils.data import DataLoader from torchvision import datasets, transforms2 检查GPU是否可用 dev…

Yolov10训练,转化onnx,推理

yolov10对于大目标的效果好&#xff0c;小目标不好 一、如果你训练过yolov5&#xff0c;yolov8&#xff0c;的话那么你可以直接用之前的环境就行 目录 一、如果你训练过yolov5&#xff0c;yolov8&#xff0c;的话那么你可以直接用之前的环境就行 二、配置好后就可以配置文件…

前端JS特效第24集:jquery css3实现瀑布流照片墙特效

jquery css3实现瀑布流照片墙特效&#xff0c;先来看看效果&#xff1a; 部分核心的代码如下(全部代码在文章末尾)&#xff1a; <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8" /> <title>jquerycss3实现瀑…

Nginx:负载均衡小专题

运维专题 Nginx&#xff1a;负载均衡小专题 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite&#xff1a;http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.net/…

【专项刷题】— 位运算

常见类型介绍&#xff1a; & &#xff1a;有 0 就是 0 | &#xff1a;有 1 就是 1 ^ &#xff1a;相同为 0 &#xff0c;相异为 1 或者 无进位相加给定一个数确定它的二进制位的第x个数是0还是1&#xff1a;将一个数的二进制的第x位改成1&#xff1a;将一个数的二进制的第x…

Windows10/11家庭版开启Hyper-V虚拟机功能详解

Hyper-V是微软的一款虚拟机软件&#xff0c;可以使我们在一台Windows PC上&#xff0c;在虚拟环境下同时运行多个互相之间完全隔离的操作系统&#xff0c;这就实现了在Windows环境下运行Linux以及其他OS的可能性。和第三方虚拟机软件&#xff0c;如VMware等相比&#xff0c;Hyp…

大模型知识问答: 文本分块要点总结

节前&#xff0c;我们组织了一场算法岗技术&面试讨论会&#xff0c;邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。 针对大模型技术趋势、算法项目落地经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。 总结链接如…

C++ 信号量和锁的区别

网上关于信号量和锁的区别&#xff0c;写的比较官方晦涩难懂&#xff0c;对于这个知识点吸收难&#xff0c;通过示例&#xff0c;我们看到信号量&#xff0c;可以控制同一时刻的线程数量&#xff0c;就算同时开启很多线程&#xff0c;依然可以的达到线程数可控 #include <i…

初识c++(命名空间,缺省参数,函数重载)

一、命名空间 1、namespace的意义 在C/C中&#xff0c;变量、函数和后面要学到的类都是大量存在的&#xff0c;这些变量、函数和类的名称将都存在于全 局作用域中&#xff0c;可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化&#xff0c;以避免命名 冲突…

世界商用飞机机型大全-使用Java抓取FlightAware后的答案

目录 前言 一、数据说明 1、实时航班飞机机型数据 2、网页结构分析 二、使用Java进行信息抓取 1、定义页面PageVO对象 2、爬取属性定义 3、启动信息抓取组件 三、成果分析 1、商业飞行的飞机机型的种类 2、飞机种类排名前十名 3、航班数排名后十名 4、看中国国产大飞…

你真的会信息收集嘛,4k字渗透测试信息收集10大技巧

前言 在渗透测试中&#xff0c;信息收集是非常关键的一步&#xff0c;它为后续的漏洞发现和利用提供了重要的基础。以下是非常详细的信息收集方式&#xff1a; 一、被动信息收集 被动信息收集是指在不与目标系统直接交互的情况下&#xff0c;通过公开渠道获取目标系统的相关…

基于51单片机的四路抢答器Protues仿真设计

一、设计背景 近年来随着科技的飞速发展&#xff0c;单片机的应用正在不断的走向深入。本文阐述了基于51单片机的八路抢答器设计。本设计中&#xff0c;51单片机充当了核心控制器的角色&#xff0c;通过IO口与各个功能模块相连接。按键模块负责检测参与者的抢答动作&#xff0c…

力扣-贪心算法4

406.根据身高重建队列 406. 根据身高重建队列 题目 假设有打乱顺序的一群人站成一个队列&#xff0c;数组 people 表示队列中一些人的属性&#xff08;不一定按顺序&#xff09;。每个 people[i] [hi, ki] 表示第 i 个人的身高为 hi &#xff0c;前面 正好 有 ki 个身高大于或…

MyBatis的简介与使用

Mybatis JDBC操作数据库的缺点 存在大量的冗余代码。手工创建 Connection、Statement 等&#xff0c;效率低下。手工将结果集封装成实体对象。查询效率低&#xff0c;没有对数据访问进行优化。 Mybatis框架 简介 MyBatis 本是 apache 的一个开源项目 iBatis, 2010年这个项目由…

imx6ull/linux应用编程学习(14) MQTT基础知识

什么是mqtt&#xff1f; 与HTTP 协议一样&#xff0c; MQTT 协议也是应用层协议&#xff0c;工作在 TCP/IP 四层模型中的最上层&#xff08;应用层&#xff09;&#xff0c;构建于 TCP/IP协议上。 MQTT 最大优点在于&#xff0c;可以以极少的代码和有限的带宽&#xff0c;为连接…

网络资源模板--Android Studio 外卖点餐App

目录 一、项目演示 二、项目测试环境 三、项目详情 四、完整的项目源码 原创外卖点餐&#xff1a;基于Android studio 实现外卖(点)订餐系统 非原创奶茶点餐&#xff1a;网络资源模板--基于 Android Studio 实现的奶茶点餐App报告 一、项目演示 网络资源模板--基于Android …