python库 - missingno

missingno 是一个用于可视化和分析数据集中缺失值的 Python 库。它提供了一系列简单而强大的工具,帮助用户直观地理解数据中的缺失模式,从而更好地进行数据清洗和预处理。missingno 库特别适用于数据分析和数据科学项目,尤其是在处理缺失数据时。


主要功能

missingno 库提供了以下几种主要功能:

  1. 矩阵图(Matrix Plot)

    • 显示数据集中的缺失值模式。
    • 通过矩阵图,可以直观地看到哪些列有缺失值,以及缺失值的分布情况。
  2. 条形图(Bar Chart)

    • 显示每列中缺失值的数量。
    • 通过条形图,可以快速了解每列缺失值的相对数量。
  3. 热图(Heatmap)

    • 显示不同列之间缺失值的相关性。
    • 通过热图,可以发现哪些列的缺失值是相关的,从而推断缺失值的可能原因。
  4. 树状图(Dendrogram)

    • 显示列之间的层次聚类关系,基于缺失值的模式。
    • 通过树状图,可以发现哪些列在缺失值模式上相似,从而进行进一步的分析。

安装

missingno 库可以通过 pip 安装:

pip install missingno

使用示例

以下是一个简单的示例,展示如何使用 missingno 库来可视化数据集中的缺失值。

import missingno as msno
import pandas as pd# 创建一个包含缺失值的数据集
data = {'A': [1, 2, np.nan, 4, 5],'B': [np.nan, 2, 3, np.nan, 5],'C': [1, 2, 3, 4, np.nan]
}
df = pd.DataFrame(data)# 绘制矩阵图
msno.matrix(df)# 绘制条形图
msno.bar(df)# 绘制热图
msno.heatmap(df)# 绘制树状图
msno.dendrogram(df)

详细说明

  1. 矩阵图(Matrix Plot)

    • msno.matrix(df):绘制矩阵图,显示每列的缺失值模式。
    • 白色表示缺失值,黑色表示非缺失值。
  2. 条形图(Bar Chart)

    • msno.bar(df):绘制条形图,显示每列中缺失值的数量。
    • 条形图的高度表示每列中缺失值的数量。
  3. 热图(Heatmap)

    • msno.heatmap(df):绘制热图,显示不同列之间缺失值的相关性。
    • 颜色越深表示相关性越强。
  4. 树状图(Dendrogram)

    • msno.dendrogram(df):绘制树状图,显示列之间的层次聚类关系。
    • 树状图可以帮助发现哪些列在缺失值模式上相似。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/42020.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

昇思MindSpore学习笔记5-02生成式--RNN实现情感分类

摘要: 记录MindSpore AI框架使用RNN网络对自然语言进行情感分类的过程、步骤和方法。 包括环境准备、下载数据集、数据集加载和预处理、构建模型、模型训练、模型测试等。 一、概念 情感分类。 RNN网络模型 实现效果: 输入: This film is terrible 正…

放大镜案例

放大镜 <!DOCTYPE html> <html lang"zh-cn"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>商品放大镜</title><link rel&qu…

如何使用allure生成测试报告

第一步下载安装JDK1.8&#xff0c;参考链接JDK1.8下载、安装和环境配置教程-CSDN博客 第二步配置allure环境&#xff0c;参考链接allure的安装和使用(windows环境)_allure windows-CSDN博客 第三步&#xff1a; 第四步&#xff1a; pytest 查看目前运行的测试用例有无错误 …

如何使用 pytorch 创建一个神经网络

我已发布在&#xff1a;如何使用 pytorch 创建一个神经网络 SapientialM.Github.io 构建神经网络 1 导入所需包 import os import torch from torch import nn from torch.utils.data import DataLoader from torchvision import datasets, transforms2 检查GPU是否可用 dev…

ffmpeg滤镜创建过程

1、创建一个滤镜图 AVFilterGraph *filter_graph avfilter_graph_alloc(); 2、创建滤镜的输入和输出 AVFilterInOut *inputs avfilter_inout_alloc(); AVFilterInOut *outputs avfilter_inout_alloc(); 3、每个滤镜创建上下文 AVFilterContext *filter1_ctx avfilter_…

Yolov10训练,转化onnx,推理

yolov10对于大目标的效果好&#xff0c;小目标不好 一、如果你训练过yolov5&#xff0c;yolov8&#xff0c;的话那么你可以直接用之前的环境就行 目录 一、如果你训练过yolov5&#xff0c;yolov8&#xff0c;的话那么你可以直接用之前的环境就行 二、配置好后就可以配置文件…

android webview 远程调试

打开远程调试选项 MainActivity super.onCreate(savedInstanceState);// enable Cordova apps to be started in the backgroundBundle extras getIntent().getExtras();if (extras ! null && extras.getBoolean("cdvStartInBackground", false)) {moveT…

前端JS特效第24集:jquery css3实现瀑布流照片墙特效

jquery css3实现瀑布流照片墙特效&#xff0c;先来看看效果&#xff1a; 部分核心的代码如下(全部代码在文章末尾)&#xff1a; <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8" /> <title>jquerycss3实现瀑…

Nginx:负载均衡小专题

运维专题 Nginx&#xff1a;负载均衡小专题 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite&#xff1a;http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.net/…

在Conda环境中高效使用Kubernetes:跨平台容器化实践指南

摘要 Conda 是一个流行的跨平台包和环境管理器&#xff0c;广泛用于Python社区。而 Kubernetes 是一个开源的容器编排系统&#xff0c;用于自动化部署、扩展和管理容器化应用程序。本文将探讨如何在 Conda 环境中使用 Kubernetes&#xff0c;包括设置 Conda 环境、容器化应用程…

【专项刷题】— 位运算

常见类型介绍&#xff1a; & &#xff1a;有 0 就是 0 | &#xff1a;有 1 就是 1 ^ &#xff1a;相同为 0 &#xff0c;相异为 1 或者 无进位相加给定一个数确定它的二进制位的第x个数是0还是1&#xff1a;将一个数的二进制的第x位改成1&#xff1a;将一个数的二进制的第x…

Windows10/11家庭版开启Hyper-V虚拟机功能详解

Hyper-V是微软的一款虚拟机软件&#xff0c;可以使我们在一台Windows PC上&#xff0c;在虚拟环境下同时运行多个互相之间完全隔离的操作系统&#xff0c;这就实现了在Windows环境下运行Linux以及其他OS的可能性。和第三方虚拟机软件&#xff0c;如VMware等相比&#xff0c;Hyp…

Linux应用编程IO基础

Linux应用编程基本IO操作 一、main 函数1、main 函数写法之无传参2、main 函数写法之有传参 二、open 打开文件三、write 写文件四、read 读文件五、close 关闭文件六、 lseek七、 返回错误处理与 errno7.1 strerror 函数7.2 perror 函数 八、 exit、_exit、_Exit8.1_exit()和_…

零基础自学爬虫技术该从哪里入手?

零基础学习Python并不一定是困难的&#xff0c;这主要取决于个人的学习方法、投入的时间以及学习目标的设定。Python是一门相对容易入门的编程语言&#xff0c;它有着简洁的语法、丰富的库和广泛的应用领域&#xff08;如数据分析、Web开发、人工智能等&#xff09;&#xff0c…

大模型知识问答: 文本分块要点总结

节前&#xff0c;我们组织了一场算法岗技术&面试讨论会&#xff0c;邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。 针对大模型技术趋势、算法项目落地经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。 总结链接如…

C++ 信号量和锁的区别

网上关于信号量和锁的区别&#xff0c;写的比较官方晦涩难懂&#xff0c;对于这个知识点吸收难&#xff0c;通过示例&#xff0c;我们看到信号量&#xff0c;可以控制同一时刻的线程数量&#xff0c;就算同时开启很多线程&#xff0c;依然可以的达到线程数可控 #include <i…

初识c++(命名空间,缺省参数,函数重载)

一、命名空间 1、namespace的意义 在C/C中&#xff0c;变量、函数和后面要学到的类都是大量存在的&#xff0c;这些变量、函数和类的名称将都存在于全 局作用域中&#xff0c;可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化&#xff0c;以避免命名 冲突…

GEE代码实例教程详解:MODIS土地覆盖分类与面积计算

简介 在本篇博客中&#xff0c;我们将使用Google Earth Engine (GEE) 对MODIS土地覆盖数据进行分析。通过MODIS/061/MCD12Q1数据集&#xff0c;我们可以识别不同的土地覆盖类型&#xff0c;并计算每种类型的总面积。 背景知识 MODIS MCD12Q1数据集 MODIS/061/MCD12Q1是NASA…

每天一个数据分析题(四百十五)- 线性回归模型

线性回归模型中误差项的数学期望为 A. 0 B. 1 C. 2 D. 3 数据分析认证考试介绍&#xff1a;点击进入 题目来源于CDA模拟题库 点击此处获取答案 数据分析专项练习题库 内容涵盖Python&#xff0c;SQL&#xff0c;统计学&#xff0c;数据分析理论&#xff0c;深度学习&am…

世界商用飞机机型大全-使用Java抓取FlightAware后的答案

目录 前言 一、数据说明 1、实时航班飞机机型数据 2、网页结构分析 二、使用Java进行信息抓取 1、定义页面PageVO对象 2、爬取属性定义 3、启动信息抓取组件 三、成果分析 1、商业飞行的飞机机型的种类 2、飞机种类排名前十名 3、航班数排名后十名 4、看中国国产大飞…