C++和Python蚂蚁搬食和蚊虫趋光性和浮标机群行为算法神经网络

🎯要点

🎯机器人群行为配置和C++行为实现:🖊脚底机器人狭隘空间导航避让障碍物行为 | 🖊脚底机器人使用摄像头耦合共振,实现同步动作 | 🖊脚底机器群使用相机,计算彼此间“分子间势能”的方式寻觅彼此 | 🖊脚底机器拖拽可移动物体,模拟清理行为 | 🖊预先规划机器群活动轨迹,模拟群机导航避障 | 🖊预先规划机器群身份号,模拟群机导航避障 | 🖊模拟蚂蚁搬运食物,预先划定巢穴和外界食物区,使用OpenGL可视化机群搬运过程,机器人使用上述避障和寻觅方式执行动作 | 🖊模拟蚊虫趋光性,使用神经网络和算法创建脚底机器人趋光性动作 | 🖊模拟上级指挥下级动作,下级机群等待上级主机器人命令,收到命令执行各种动作行为。🎯统计学机器人集群量化属性 | 🎯浮标机器人集群

📜机器人用例

📜人形机算法模型:Python人形机踊跃跨栏举重投篮高维数动作算法模型

📜机器人动力学运动学求解:Python | C++ | MATLAB机器人正逆向运动学动力学求解器及算法

📜机器人动力学运动学:Python | C# | MATLAB 库卡机器人微分运动学 | 欧拉-拉格朗日动力学 | 混合动力控制

📜ROS系统机器人:ROS2(Cpp或Python)机器学习路径选择三维模拟平衡车及YOLOv8视觉消息

📜ROS树莓派Raspberry Pi机器人:Cpp(Python)和MATLAB差动驱动ROS Raspberry Pi全功能机器人原型

📜ROS机器人导航算法:Cpp或Python(ROS2)有限状态机-行为树数学模型及虚拟力场本地导航算法避障

📜树莓派Raspberry Pi机器人:Python远程SSH和HTTP视频流级联分类Raspberry Pi 机器人

📜机器人吸尘器:C(C++)和Python实现STM32F4实时操作系统(FreeRTOS)吸尘器

🍪语言内容构成

在这里插入图片描述
在这里插入图片描述

🍇Python粒子群优化算法优化葛根函数

在计算科学中,粒子群优化 是一种计算方法,它通过迭代尝试改进候选解决方案来优化问题,以满足给定的质量标准。它通过拥有一组候选解决方案(这里称为粒子)并根据粒子位置和速度的简单数学公式在搜索空间中移动这些粒子来解决问题。每个粒子的运动都受到其局部最佳已知位置的影响,但也被引导到搜索空间中的最佳已知位置,这些位置会随着其他粒子找到更好的位置而更新。这有望使群体向最佳解决方案移动。

此算法的一个基本变体是通过拥有一个候选解决方案(称为粒子)的种群(称为群体)来工作的。这些粒子根据一些简单的公式在搜索空间中移动。粒子的移动由它们自己在搜索空间中的最佳位置以及整个群体的最佳位置引导。当发现改进的位置时,这些位置将引导群体的移动。这个过程不断重复,希望最终能找到令人满意的解决方案,但不能保证。

形式上,令 f : R n → R f: R ^n \rightarrow R f:RnR 为必须最小化的成本函数。该函数将候选解作为实数向量形式的参数,并产生一个实数作为输出,该实数指示给定候选解的目标函数值。 f f f 的梯度未知。目标是为搜索空间中的所有 b b b 找到一个解决方案 a,其中 f ( a ) ≤ f ( b ) f( a ) \leq f( b ) f(a)f(b),这意味着 a a a 是全局最小值。

S S S 为群体中粒子的数量,每个粒子在搜索空间中都有一个位置 x i ∈ R n x _i \in R ^n xiRn 和一个速度 v i ∈ R n v _i \in R ^n viRn。令 p i p _i pi 为粒子 i i i 的最佳已知位置,并令 g g g​ 为整个群体的最佳已知位置。最小化成本函数的基本粒子群优化算法是:

for 每个粒子 i = 1, ..., S do使用均匀分布的随机向量初始化粒子的位置: xi ~ U(blo, bup)将粒子的已知位置初始化为其初始位置: pi ← xiif f(pi) < f(g) then更新群体最知名的位置: g ← pi初始化粒子速度: vi ~ U(-|bup-blo|, |bup-blo|)
while 不满足终止条件 do:for 每个粒子 i = 1, ..., S dofor 每个维度 d = 1, ..., n do选择随机数: rp, rg ~ U(0,1)更新粒子的速度: vi,d ← w vi,d + φp rp (pi,d-xi,d) + φg rg (gd-xi,d)更新粒子的位置: xi ← xi + viif f(xi) < f(pi) then更新粒子的已知位置: pi ← xiif f(pi) < f(g) then更新群体最知名的位置: g ← pi

b lo  b _{\text {lo }} blo  b up  b _{\text {up }} bup  分别表示搜索空间的下边界和上边界。 w参数是惯性权重。参数 φ p \varphi_p φp φ g \varphi_g φg通常被称为认知系数和社会系数。终止标准可以是执行的迭代次数,也可以是找到足够目标函数值的解决方案。 参数 w 、 φ p w 、 \varphi_{ p } wφp φ g \varphi_{ g } φg​ 由实践者选择,并控制此算法的行为和效果。

在数学优化中,葛根函数是一个非凸函数,用作优化算法的性能测试问题。它是非线性多峰函数的典型示例。由于搜索空间大且局部最小值数量多,因此寻找此函数的最小值是一个相当困难的问题。

n n n 维域上,它的定义如下:
f ( x ) = A n + ∑ i = 1 n [ x i 2 − A cos ⁡ ( 2 π x i ) ] f( x )=A n+\sum_{i=1}^n\left[x_i^2-A \cos \left(2 \pi x_i\right)\right] f(x)=An+i=1n[xi2Acos(2πxi)]
其中 A = 10 A=10 A=10 x i ∈ [ − 5.12 , 5.12 ] x_i \in[-5.12,5.12] xi[5.12,5.12]。有很多极值:

  • 全局最小值位于 x = 0 x = 0 x=0,其中 f ( x ) = 0 f( x )=0 f(x)=0
  • x i ∈ [ − 5.12 , 5.12 ] x_i \in[-5.12,5.12] xi[5.12,5.12] 的最大函数值位于 x i ∈ [ ± 4.52299366 … , … , ± 4.52299366 … ] x_i \in[ \pm 4.52299366 \ldots, \ldots, \pm 4.52299366 \ldots] xi[±4.52299366,,±4.52299366] 附近

维数  最大值为  ± 4.52299366 1 40.35329019 2 80.70658039 3 121.0598706 4 161.4131608 5 201.7664509 6 242.1197412 7 282.4730314 8 322.8263216 9 363.1796117 \begin{array}{|l|l|} \hline \text { 维数 } & \text { 最大值为 } \pm 4.52299366 \\ \hline 1 & 40.35329019 \\ \hline 2 & 80.70658039 \\ \hline 3 & 121.0598706 \\ \hline 4 & 161.4131608 \\ \hline 5 & 201.7664509 \\ \hline 6 & 242.1197412 \\ \hline 7 & 282.4730314 \\ \hline 8 & 322.8263216 \\ \hline 9 & 363.1796117 \\ \hline \end{array}  维数 123456789 最大值为 ±4.5229936640.3532901980.70658039121.0598706161.4131608201.7664509242.1197412282.4730314322.8263216363.1796117

下面是使用此算法优化葛根函数的示例,葛根函数是优化中流行的测试函数。葛根函数有许多局部最小值,使其成为一个具有挑战性的优化问题。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3Ddef rastrigin(x):n = len(x)return 10*n + sum([xi**2 - 10*np.cos(2*np.pi*xi) for xi in x])def pso(cost_func, dim=2, num_particles=30, max_iter=100, w=0.5, c1=1, c2=2):particles = np.random.uniform(-5.12, 5.12, (num_particles, dim))velocities = np.zeros((num_particles, dim))best_positions = np.copy(particles)best_fitness = np.array([cost_func(p) for p in particles])swarm_best_position = best_positions[np.argmin(best_fitness)]swarm_best_fitness = np.min(best_fitness)for i in range(max_iter):r1 = np.random.uniform(0, 1, (num_particles, dim))r2 = np.random.uniform(0, 1, (num_particles, dim))velocities = w * velocities + c1 * r1 * (best_positions - particles) + c2 * r2 * (swarm_best_position - particles)particles += velocitiesfitness_values = np.array([cost_func(p) for p in particles])improved_indices = np.where(fitness_values < best_fitness)best_positions[improved_indices] = particles[improved_indices]best_fitness[improved_indices] = fitness_values[improved_indices]return swarm_best_position, swarm_best_fitnesssolution, fitness = pso(rastrigin, dim=dim)print('Solution:', solution)
print('Fitness:', fitness)x = np.linspace(-5.12, 5.12, 100)
y = np.linspace(-5.12, 5.12, 100)
X, Y = np.meshgrid(x, y)
Z = rastrigin([X, Y])fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, Z, cmap='viridis')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')ax.scatter(solution[0], solution[1], fitness, color='red')
plt.show()

👉参阅&更新:计算思维 | 亚图跨际

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/41811.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WAIC2024 上海 | Gooxi 全面展示智算新成果,加速人工智能落地应用

浦江之畔&#xff0c;大咖云集&#xff1b;智能浪潮&#xff0c;奔涌不息。7月4日&#xff0c;被誉为人工智能界风向标的世界人工智能大会暨人工智能全球治理高级别会议在上海盛大召开&#xff0c;Gooxi此次携最新AI服务器以及解决方案参与&#xff0c;以算为擎赋能新质生产力&…

如何对待信息技术课上学生玩游戏现象

对待信息技术课上学生玩游戏的现象&#xff0c;需要采取一系列综合措施&#xff0c;既要防止学生分心&#xff0c;又要确保课堂的教学质量和学生的积极参与。以下是一些建议&#xff1a; 1. 明确课堂规则&#xff1a;在课程开始之初&#xff0c;明确告知学生课堂上不允许玩游戏…

【UE Lua】 快速入门(基础语法、与UE引擎的交互)

目录 0 引言1 基础语法1.1 变量和数据类型1.2 注释1.3 控制结构1.4 函数1.5 表&#xff08;Table&#xff09;1.6 元表&#xff08;Metatable&#xff09;1.7 字符串操作1.8 模块和包1.9 错误处理 2 数据结构 - 表2.1 表&#xff08;Table&#xff09;2.2 元表&#xff08;Meta…

「数据结构详解·十四」对顶堆

「数据结构详解一」树的初步「数据结构详解二」二叉树的初步「数据结构详解三」栈「数据结构详解四」队列「数据结构详解五」链表「数据结构详解六」哈希表「数据结构详解七」并查集的初步「数据结构详解八」带权并查集 & 扩展域并查集「数据结构详解九」图的初步「数据结构…

【计算机毕业设计】017基于微信小程序的学生公寓电费信息管理系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

多线程网络实战之仿qq群聊的服务器和客户端

目录 一、前言 二、设计需求 1.服务器需求 2.客户端需求 三、服务端设计 1.项目准备 2.初始化网络库 3.SOCKET创建服务器套接字 4. bind 绑定套接字 5. listen监听套接字 6. accept接受客户端连接 7.建立套接字数组 8. 建立多线程与客户端通信 9. 处理线程函数&…

【3GPP核心网】【5G】精讲5G核心网系统架构主要特征

目录 前言 1. 5G核心网系统架构主要特征 1.1 5G核心网与4G核心网EPC区别 1.2 5G核心网系统架构主要特征 2. 5G网络逻辑架构 2.1 新型基础设施平台 2.2 逻辑架构 前言 首先需要理解核心网的角色定位&#xff0c;作为移动通信网络的核心部分&#xff0c;核心网起着承上启下的作用…

【收藏】欧盟CE、美国FDA法规及标准查询常用网站

01 CE法规&标准查询网站 医疗器械主管部门的网站 网址: https://www.camd-europe.eu/ 简介: CAMD的全称是Competent authorities for medical devices&#xff0c;翻译成中文叫做医疗器械监管机构&#xff0c;实际上它指的是欧盟成员国医疗器械监管机构的联盟&#xff…

程序人生【追光的日子】今天我们不谈技术,谈一谈:人工智能的意义到底是什么?来看看今天分享的故事...我想我们都愿意相信,也许AI真的会有温度,这一天不远了~!

有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。 🎯作者主页: 追光者♂🔥 🌸个人简介: 💖[1] 计算机专业硕士研究生💖 🌿[2] 2023年城市之星领跑者TOP1(哈尔滨)🌿 🌟[3] 2022年度博客之星人工智能领域…

Java SpringBoot MongoPlus 使用MyBatisPlus的方式,优雅的操作MongoDB

Java SpringBoot MongoPlus 使用MyBatisPlus的方式&#xff0c;优雅的操作MongoDB 介绍特性安装新建SpringBoot工程引入依赖配置文件 使用新建实体类创建Service测试类进行测试新增方法查询方法 官方网站获取本项目案例代码 介绍 Mongo-Plus&#xff08;简称 MP&#xff09;是一…

网络服务器配置与管理

网络服务器配置与管理是一个涉及多个方面的领域&#xff0c;它涵盖了从物理硬件的设置到操作系统、网络服务和应用的配置&#xff0c;再到日常维护和安全策略的实施。以下是网络服务器配置与管理的一些核心概念和步骤&#xff1a; 硬件配置&#xff1a; 选择合适的服务器硬件&a…

基于docker上安装elasticSearch7.12.1

部署elasticsearch 首先&#xff0c;先创建网络 # 创建网络 docker network create es-net拉取elasticSearch的镜像 #拉取镜像 docker pull elasticsearch:7.12.1创建挂载点目录 # 创建挂载点目录 mkdir -p /usr/local/es/data /usr/local/es/config /usr/local/es/plugin…

【SD教程】进阶篇图片复现AnimateDiff动画插件基础教程(附模型插件)

当你成功安装了SD&#xff08;Stable Diffusion&#xff09;后&#xff0c;是否也产生过这样的疑惑&#xff1a;为何我创作的图片与他人的作品在风格和质量上存在差异&#xff1f; 看着别人创作的精致、引人入胜的图片&#xff0c;你是否也渴望缩小这种质感上的差距&#xff1…

游戏AI的创造思路-技术基础-决策树(1)

决策树&#xff0c;是每个游戏人必须要掌握的游戏AI构建技术&#xff0c;难度小&#xff0c;速度快&#xff0c;结果直观&#xff0c;本篇将对决策树进行小小解读~~~~ 目录 1. 定义 2. 发展历史 3. 决策树的算法公式和函数 3.1. 信息增益&#xff08;Information Gain&…

深度解析:STM32对接米家平台,打造WiFi智能插座(ESP8266、电流检测)

摘要: 智能插座作为智能家居的入门级设备&#xff0c;凭借其低成本、易部署等优势&#xff0c;受到了广大用户的青睐。本文将引领你从零开始&#xff0c;使用功能强大的STM32微控制器、广受欢迎的ESP8266 WiFi模块以及功能丰富的米家IoT平台&#xff0c;一步步打造出一款能够远…

代码随想录-Day50

1143. 最长公共子序列 给定两个字符串 text1 和 text2&#xff0c;返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 &#xff0c;返回 0 。 一个字符串的 子序列 是指这样一个新的字符串&#xff1a;它是由原字符串在不改变字符的相对顺序的情况下删除某些…

Linux环境中安装JDK

1.下载安装包 可以通过访问oracle官网&#xff1a;Java Downloads | Oracle 中国 下载对应的安装包。 本文使用的是java8的安装包&#xff0c;包名为&#xff1a;jdk-8u401-linux-x64.tar.gz 2.上传安装包到Linux环境 3.进入/usr目录下&#xff0c;新建一个java的目录&#…

Python数据分析-欧洲经济聚类和主成分分析

一、研究背景 欧洲经济长期以来是全球经济体系中的重要组成部分。无论是在全球金融危机后的复苏过程中&#xff0c;还是在新冠疫情期间&#xff0c;欧洲经济的表现都对世界经济产生了深远的影响。欧洲各国经济体之间既存在相似性&#xff0c;也存在显著的差异。这些差异不仅体…

Linux下QT程序启动失败问题排查方法

文章目录 0.问题背景1.程序启动失败常见原因2.排查依赖库问题2.1 依赖库缺失2.2 依赖库加载路径错误2.3 依赖库版本不匹配2.4 QT插件库缺失2.4.1 QT插件库缺失2.4.2 插件库自身的依赖库缺失 2.5 系统基础C库不匹配 3.资源问题3.1 缺少翻译文件3.2 缺少依赖的资源文件3.3 缺少依…

水果商城系统 SpringBoot+Vue

1、技术栈 技术栈&#xff1a;SpringBootVueMybatis等使用环境&#xff1a;Windows10 谷歌浏览器开发环境&#xff1a;jdk1.8 Maven mysql Idea 数据库仅供学习参考 【已经答辩过的毕业设计】 项目源码地址 2、功能划分 3、效果演示