【matlab 路径规划】基于改进遗传粒子群算法的药店配送路径优化

一 背景介绍

本文分享的是一个基于订单合并的订单分配和路径规划联合优化,主要背景是骑手根据客户需求,从药店取药之后进行配送,配送的过程中考虑路径的长度、客户的服务时间窗、车辆的固定成本等要素,经过建模和优化得到最优的配送方案。

二 模型介绍

2.1基本假设

配送的具体流程和现实情况,建立的数学模型基于以下假设条件:
(1)O2O 药品零售平台旗下的各个门店能够满足已下单顾客的需求量,即不存在供不应
求的情况。
(2)已知消费者下单商品数量、地理位置及时间窗和每个消费者的需求量不会发生变化
(3)骑手在每个配送点服务时间恒定且相同,由于服务时间较短所以忽略不计。
(4)骑手从药店出发,中途不可返回药店取货,完成所有的配送任务后需要返回药店。
(5)在骑手对各配送点进行配送的过程中,不考虑交通堵塞、车辆故障、天气恶劣等突
发状况的影响。

2.2目标函数

在这里插入图片描述

2.3 约束条件

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三 算法介绍

遗传算法是一种模拟自然进化过程的优化算法,用于解决优化问题。它模拟了生物进化的过程,通过对优良个体的选择、交叉和变异,逐步优化解的质量,最终找到最优解。

遗传算法的基本步骤包括:

  1. 初始化种群:随机生成一组初始解作为种群,通常采用随机数生成的方式。

  2. 适应度评价:根据问题的具体要求,采用适应度函数对每个个体进行评估,得到其适应度值。

  3. 选择操作:根据个体的适应度值,按照一定的选择概率选择优良个体作为父代,通常采用轮盘赌选择方法。

  4. 交叉操作:从选出的父代个体中选取一对个体,通过某种交叉方式生成新的个体。

  5. 变异操作:对新生成的个体进行一定的变异操作,改变其基因的值,增加种群的多样性。

  6. 更新种群:将新生成的个体加入到种群中,得到更新后的种群。

  7. 终止条件判断:判断是否满足终止条件,如达到最大迭代次数或找到满足要求的解。

  8. 返回最优解:返回种群中适应度最好的个体作为最优解。

遗传算法通过迭代优化的方式,不断改进解的质量,寻找到全局最优解或较好的局部最优解。它在解决复杂问题、搜索空间大的问题等方面具有很好的性能。

四 算例分析

算例1 本文使用30个节点的算例,1个配送节点 29个需求节点(分为三个优先级)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

车辆编号.1: 0 -> 7 -> 1 -> 12 -> 15 -> 24 -> 22 -> 11 -> 27 -> 26 -> 29 ->
25 -> 0 到达时间节点: 0 - 4.7 - 9.9 - 11.4 - 12.4 - 14.9 - 15.6 - 17.4 -
19.6 - 24 - 26.7 - 28.4 - 33.7 min 行驶距离: 8413.36 m, 总时间: 33.7 min; 行驶成本 (C1): 21.03, 惩罚成本 (C2): 50.88
------------------------------------------------------------- 车辆编号.2: 0 -> 8 -> 19 -> 0 到达时间节点: 0 - 7.9 - 10.2 - 19.7 min 行驶距离: 4931.47
m, 总时间: 19.7 min; 行驶成本 (C1): 12.33, 惩罚成本 (C2): 29.59
------------------------------------------------------------- 车辆编号.3: 0 -> 18 -> 13 -> 4 -> 5 -> 16 -> 28 -> 0 到达时间节点: 0 - 2.5 - 6 - 7.5 -
10.1 - 13.6 - 15.1 - 16.6 min 行驶距离: 4138.40 m, 总时间: 16.6 min; 行驶成本 (C1): 10.35, 惩罚成本 (C2): 29.81
------------------------------------------------------------- 车辆编号.4: 0 -> 10 -> 6 -> 9 -> 20 -> 0 到达时间节点: 0 - 5.9 - 10 - 12.4 - 15.5 -
20.1 min 行驶距离: 5020.18 m, 总时间: 20.1 min; 行驶成本 (C1): 12.55, 惩罚成本 (C2): 33.81
------------------------------------------------------------- 车辆编号.5: 0 -> 23 -> 17 -> 14 -> 21 -> 30 -> 0 到达时间节点: 0 - 6.2 - 7.2 - 8.2 -
11.8 - 20.5 - 22.8 min 行驶距离: 5695.44 m, 总时间: 22.8 min; 行驶成本 (C1): 14.24, 惩罚成本 (C2): 37.93
------------------------------------------------------------- 车辆编号.6: 0 -> 2 -> 3 -> 0 到达时间节点: 0 - 1.5 - 5.7 - 9.5 min 行驶距离: 2363.65 m,
总时间: 9.5 min; 行驶成本 (C1): 5.91, 惩罚成本 (C2): 14.18

算例2 本文使用10个节点的算例,1个配送节点 9个需求节点(分为三个优先级)

在这里插入图片描述
**

车辆编号.1: 0 -> 2 -> 3 -> 1 -> 5 -> 4 -> 7 -> 8 -> 9 -> 6 -> 0 到达时间节点:
0 - 1.5 - 5.7 - 13.8 - 15.3 - 16.9 - 18.5 - 22.1 - 27.2 - 29.5 - 32.4
min 行驶距离: 8090.30 m, 总时间: 32.4 min; 行驶成本 (C1): 20.23, 惩罚成本 (C2):
54.26

**

六 项目分享

部分源码

clc
clear
close all
tic % 保存当前时间dataloader
%% 初始化问题参数
CustomerNum = size(Position, 1) - 1; % 需求点个数%% 需求点绘图
figure
hold on
xx = Position(:, 1);
yy = Position(:, 2);
idx1 = find(order_priority == 1);
idx2 = find(order_priority == 2);
idx3 = find(order_priority == 3);
scatter(xx(idx1), yy(idx1), 25, 'filled', 'go', 'DisplayName', '第一优先级')
scatter(xx(idx2), yy(idx2), 25, 'filled', 'bo', 'DisplayName', '第二优先级')
scatter(xx(idx3), yy(idx3), 25, 'filled', 'yo', 'DisplayName', '第三优先级')
scatter(xx(1), yy(1), 200, 'filled', 'rp', 'DisplayName', '药店')
legend
title('需求点散点图')%% 初始化算法参数
NIND = 1000; % 粒子数量
MAXGEN = 100; % 最大迭代次数
mutation_prob = 0.05; % 变异概率
crossover_prob = 0.8; % 交叉概率
tournament_size = 5; % 锦标赛规模%% 为预分配内存而初始化的0矩阵
Population = zeros(NIND, CustomerNum * 2 + 1); % 预分配内存,用于存储种群数据
PopDistance = zeros(NIND, 1); % 预分配矩阵内存
GbestDisByGen = zeros(MAXGEN, 1); % 预分配矩阵内存penalty_costs = zeros(NIND, 1);
travel_costs = zeros(NIND, 1);
vehicle_costs = zeros(NIND, 1);
total_distances = zeros(NIND, 1);
penalty_orders = cell(NIND, 1);for i = 1:NIND%% 初始化各粒子Population(i, :) = InitPop(CustomerNum, Distance, setting); % 使用GRASP算法生成TSP路径%% 计算路径长度PopDistance(i) = CalcDis(Population(i,:),Distance,TimeWindow,order_priority,setting); % 计算路径长度
end
%% 存储Pbest数据
Pbest = Population; % 初始化Pbest为当前粒子集合
PbestDistance = PopDistance; % 初始化Pbest的目标函数值为当前粒子集合的目标函数值%% 存储Gbest数据
[mindis, index] = min(PbestDistance); % 获得Pbest中
Gbest = Pbest(index, :); % 初始Gbest粒子
GbestDistance = mindis; % 初始Gbest粒子的目标函数值%% 开始迭代
gen = 1;while gen <= MAXGEN%% 选择算子(锦标赛选择)new_population = zeros(size(Population));for i = 1:NINDnew_population(i, :) = Selection(Population, PopDistance, tournament_size); % 锦标赛选择endPopulation = new_population;%% 每个粒子更新for i = 1:NIND%% 粒子与Pbest交叉if rand < crossover_probPopulation(i, 2:end-1) = Crossover(Population(i, 2:end-1), Pbest(i, 2:end-1)); % 交叉end% 新路径长度变短则记录至PbestPopDistance(i) = CalcDis(Population(i,:),Distance,TimeWindow,order_priority,setting); % 计算路径长度if PopDistance(i) < PbestDistance(i) % 若新路径长度变短Pbest(i, :) = Population(i, :); % 更新PbestPbestDistance(i) = PopDistance(i); % 更新Pbest距离end%% 根据Pbest更新Gbest[mindis, index] = min(PbestDistance); % 找出Pbest中最短距离if mindis < GbestDistance % 若Pbest中最短距离小于Gbest距离Gbest = Pbest(index, :); % 更新GbestGbestDistance = mindis; % 更新Gbest距离end%% 粒子与Gbest交叉if rand < crossover_probPopulation(i, 2:end-1) = Crossover(Population(i, 2:end-1), Gbest(2:end-1));end% 新路径长度变短则记录至PbestPopDistance(i) = CalcDis(Population(i,:),Distance,TimeWindow,order_priority,setting); % 计算路径长度if PopDistance(i) < PbestDistance(i) % 若新路径长度变短Pbest(i, :) = Population(i, :); % 更新PbestPbestDistance(i) = PopDistance(i); % 更新Pbest距离end%% 粒子自身变异if rand < mutation_probPopulation(i, :) = Mutate(Population(i, :), Distance); % 传递Distance矩阵end% 新路径长度变短则记录至PbestPopDistance(i) = CalcDis(Population(i,:),Distance,TimeWindow,order_priority,setting); % 计算路径长度if PopDistance(i) < PbestDistance(i) % 若新路径长度变短Pbest(i, :) = Population(i, :); % 更新PbestPbestDistance(i) = PopDistance(i); % 更新Pbest距离end%% 根据Pbest更新Gbest[mindis, index] = min(PbestDistance); % 找出Pbest中最短距离if mindis < GbestDistance % 若Pbest中最短距离小于Gbest距离Gbest = Pbest(index, :); % 更新GbestGbestDistance = mindis; % 更新Gbest距离endend%% 显示此代信息fprintf('迭代次数 = %d, 最小成本 = %.2f   \n', gen, GbestDistance)%% 存储此代最短距离GbestDisByGen(gen) = GbestDistance;%% 更新迭代次数gen = gen + 1;
end% 删去路径中多余1
for i = 1:length(Gbest) - 1if Gbest(i) == Gbest(i + 1)Gbest(i) = 0; % 相邻位都为1时前一个置零end
end
Gbest(Gbest == 0) = []; % 删去多余零元素Gbest = Gbest - 1; % 编码各减1,与文中的编码一致%% 计算结果数据输出到命令行
disp('-------------------------------------------------------------')
toc % 显示运行时间
TextOutput(Gbest, Distance, TimeWindow, setting); % 显示最优路径
disp('-------------------------------------------------------------')%% 迭代图
figure
plot(GbestDisByGen, 'LineWidth', 2) % 展示目标函数值历史变化
xlim([1 gen - 1]) % 设置 x 坐标轴范围
set(gca, 'LineWidth', 1)
xlabel('迭代次数')
ylabel('最小成本')
title('遗传粒子群迭代曲线图')%% 绘制实际路线
DrawPath(Gbest, Position, idx1, idx2, idx3)

本项目是典型的考虑车辆容量,车辆行驶距离,客户时间窗的车辆路径规划问题。使用了性能相对较好的遗传粒子群算法(GAPSO),代码使用模块化编程,主函数框架相对固定,能够兼容不同类型的优化模型。
需要完整项目源码或者需要定制项目的朋友欢迎咨询。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/41371.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C# WinForm —— 38 SplitContainer介绍

1. 简介 将页面拆分成两个大小可以调整的区域&#xff0c;中间有一个拆分条&#xff0c;可以拖动拆分条来调整左右区域的大小 2. 属性 属性解释(Name)控件ID&#xff0c;在代码里引用的时候会用到BoderStyle边框样式&#xff1a;None、FixedSingle、Fixed3DAutoScroll当控件…

C++ 引用做函数返回值

作用&#xff1a;引用是可以作为函数的返回值存在的 注意&#xff1a;不要返回局部变量引用 用法&#xff1a;函数调用作为左值 示例&#xff1a; 运行结果&#xff1a;

程序员熬夜看欧洲杯被“冻住”,呼吸困难……

2024欧洲杯接近尾声&#xff0c;更是激发球迷兴趣。由于时差关系&#xff0c;很多球迷熬夜看球&#xff0c;啤酒、宵夜成了标配。然而&#xff0c;在这份欢乐背后&#xff0c;也隐藏着健康风险。 日前&#xff0c;浙江杭州29岁的程序员单先生熬夜与朋友看完球赛后开车回家&…

零基础STM32单片机编程入门(九)IIC总线详解及EEPROM实战含源码视频

文章目录 一.概要二.IIC总线基本概念1.总体特征2.通讯流程 三.EEPROM介绍1.M24C08基本介绍2.向M24C08写一个字节时序图3.从M24C08读一个字节时序图 四.GPIO模拟IIC驱动M24C08读写五.CubeMX工程源代码下载六.讲解视频链接地址七.小结 一.概要 IIC(Inter&#xff0d;Integrated …

黑马|最新AI+若依 |初识项目

本章主要内容是&#xff1a; 1.快速搭建了若依前后端项目在本地 2.实现了单表的增删改查快速生成 文章目录 介绍1.若依介绍2.若依的不同版本3.项目运行环境 初始化前后端项目1.下载若依项目2.初始化后端a.把表导入到数据库中b.更改application.yml文件 3.初始化前端a.安装依赖…

基于LoFTR_TRT项目实现LoFTR模型的trt推理与onnx推理,3060显卡下320图像30ms一组图

本博文主要记录了使用LoFTR_TRT项目将LoFTR模型导出为onnx模型&#xff0c;然后将onnx模型转化为trt模型。并分析了LoFTR_TRT与LoFTR的基本代码差异&#xff0c;但从最后图片效果来看是与官网demo基本一致的&#xff0c;具体可以查看上一篇博客记录。最后记录了onnx模型的使用【…

WebAssembly场景及未来

引言 从前面的文章中&#xff0c;我们已经了解了 WebAssembly&#xff08;WASM&#xff09; 的基本知识&#xff0c;演进历程&#xff0c;以及简单的使用方法。通过全面了解了WebAssembly的设计初衷和优势&#xff0c;我们接下来要知道在什么样的场景中我们会使用 WASM 呢&…

在门店里造绿色氧吧!康养行业也这么卷了?

拼啥不如拼健康&#xff0c;现在的人算是活明白了&#xff0c;不但中老年人这样想&#xff0c;年轻人也这样干。你可能不知道&#xff0c;现在众多健康养生门店&#xff0c;逐渐成了年轻人“组团养生”的好去处&#xff0c;也是他们吃喝玩乐之外的新兴消费趋势。 而在看得见的…

原理图设计工作平台:capture和capture CIS的区别在于有没有CIS模块

1环境:design entry CIS 2.参数设置命令options——preference&#xff08;7个选项卡colors/print&#xff0c;grid display&#xff0c;miscellaneous&#xff0c;pan and zoom&#xff0c;select&#xff0c;text editor和board simulation&#xff09; 1)颜色设置colors/p…

应急响应--网站(web)入侵篡改指南

免责声明:本文... 目录 被入侵常见现象: 首要任务&#xff1a; 分析思路&#xff1a; 演示案例: IIS&.NET-注入-基于时间配合日志分析 Apache&PHP-漏洞-基于漏洞配合日志分析 Tomcat&JSP-弱口令-基于后门配合日志分析 (推荐) Webshell 查杀-常规后门&…

R语言实战—圆形树状图

话不多说&#xff0c;先看最终效果&#xff1a; 圆形树状图是树状图的一个变型&#xff0c;其实都是层次聚类。 接下来看代码步骤&#xff1a; 首先要先安装两个包&#xff1a; install.packages("ggtree") install.packages("readxl") 咱就别问问什么…

go zero入门

一、goctl安装 goctl 是 go-zero 的内置脚手架&#xff0c;可以一键生成代码、文档、部署 k8s yaml、dockerfile 等。 # Go 1.16 及以后版本 go install github.com/zeromicro/go-zero/tools/goctllatest检查是否安装成功 $ goctl -v goctl version 1.6.6 darwin/amd64vscod…

vue2响应式原理+模拟实现v-model

效果 简述原理 配置对象传入vue实例 模板解析&#xff0c;遍历出所有文本节点&#xff0c;利用正则替换插值表达式为真实数据 data数据代理给vue实例&#xff0c;以后通过this.xxx访问 给每个dom节点增加观察者实例&#xff0c;由观察者群组管理&#xff0c;内部每一个键值…

sqlite 数据库 介绍

文章目录 前言一、什么是 SQLite &#xff1f;二、语法三、SQLite 场景四、磁盘文件 前言 下载 目前已经出到了&#xff0c; Version 3.46.0 SQLite&#xff0c;是一款轻型的数据库&#xff0c;是遵守ACID的关系型数据库管理系统&#xff0c;它包含在一个相对小的C库中。它是…

VMware虚拟机配置桥接网络

转载&#xff1a;虚拟机桥接网络配置 一、VMware三种网络连接方式 VMware提供了三种网络连接方式&#xff0c;VMnet0, VMnet1, Vmnet8&#xff0c;分别代表桥接&#xff0c;Host-only及NAT模式。在VMware的编辑-虚拟网络编辑器可看到对应三种连接方式的设置&#xff08;如下图…

Square Root SAM论文原理

文章目录 Square Root SAM论文原理核心原理SLAM问题的3种表示贝叶斯网络因子图&#xff08;Factor graph&#xff09;马尔科夫随机场(Markov Random Field, MRF) SLAM最小二乘问题&线性化因式分解 factorization矩阵与图(Matrices ⇔ Graphs)因式分解&变量消元(Factori…

Kafka系列之Kafka知识超强总结

一、Kafka简介 Kafka是什么 Kafka是一种高吞吐量的分布式发布订阅消息系统&#xff08;消息引擎系统&#xff09;&#xff0c;它可以处理消费者在网站中的所有动作流数据。 这种动作&#xff08;网页浏览&#xff0c; 搜索和其他用户的行动&#xff09;是在现代网络上的许多社…

14-22 剑和远方2 - 深度神经网络中的学习机制

概论 在第一部分中&#xff0c;我们深入探讨了人工智能的兴衰简史以及推动人工智能发展的努力。我们研究了一个简单的感知器&#xff0c;以了解其组件以及简单的 ANN 如何处理数据和权重层。在简单的 ANN 中&#xff0c;不会对数据执行特定操作。ANN 中的激活函数是一个线性函…

flask使用定时任务flask_apscheduler(APScheduler)

Flask-APScheduler描述: Flask-APScheduler 是一个 Flask 扩展&#xff0c;增加了对 APScheduler 的支持。 APScheduler 有三个内置的调度系统可供您使用&#xff1a; Cron 式调度&#xff08;可选开始/结束时间&#xff09; 基于间隔的执行&#xff08;以偶数间隔运行作业…

移动校园(7)ii:uniapp响应拦截器处理token,以及微信小程序报错当前页面正在处于跳转状态,请稍后再进行跳转....

依据昨天的写完&#xff0c;在token过期之后&#xff0c;再次调用接口&#xff0c;会触发后端拦截&#xff0c;扔进全局错误处理中间件 前端说明提示都没有&#xff0c;只有一个这个&#xff0c;现在优化一下&#xff0c;再写一个类似全局后置守卫&#xff0c;当状态码是401的时…