Kafka系列之Kafka知识超强总结

一、Kafka简介

Kafka是什么

Kafka是一种高吞吐量的分布式发布订阅消息系统(消息引擎系统),它可以处理消费者在网站中的所有动作流数据。 这种动作(网页浏览,
搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来
解决。 对于像Hadoop一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka的目的是通过Hadoop
的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。

其实我们简单点理解就是系统A发送消息给kafka(消息引擎系统),系统B从kafka中读取A发送的消息。而kafka就是个中间商。

1.1 Kafka的特性:

  • 高吞吐量、低延迟:kafka每秒可以处理几十万条消息,它的延迟最低只有几毫秒,每个topic可以分多个partition, consumer group 对partition进行consume操作。

  • 可扩展性:kafka集群支持热扩展

  • 持久性、可靠性:消息被持久化到本地磁盘,并且支持数据备份防止数据丢失

  • 容错性:允许集群中节点失败(若副本数量为n,则允许n-1个节点失败)

  • 高并发:支持数千个客户端同时读写

1.2 Kafka的使用场景:

Kafaka经常用于削峰、解耦、异步。

  • 日志收集:一个公司可以用Kafka可以收集各种服务的log,通过kafka以统一接口服务的方式开放给各种consumer,例如hadoop、Hbase、Solr等。

  • 消息系统:解耦生产者和消费者、缓存消息等。

  • 用户活动跟踪:Kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到kafka的topic中,然后订阅者通过订阅这些topic来做实时的监控分析,或者装载到hadoop、数据仓库中做离线分析和挖掘。

  • 运营指标:Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告。

  • 流式处理:比如spark streaming和storm

  • 事件源

1.3 Kakfa的设计思想

Kakfa Broker Leader的选举:Kakfa Broker集群受Zookeeper管理。所有的Kafka Broker节点一起去Zookeeper上注册一个临时节点,因为只有一个Kafka Broker会注册成功,其他的都会失败,所以这个成功在Zookeeper上注册临时节点的这个Kafka Broker会成为Kafka Broker Controller,其他的Kafka broker叫Kafka Broker follower。(这个过程叫Controller在ZooKeeper注册Watch)。这个Controller会监听其他的Kafka Broker的所有信息,如果这个kafka broker controller宕机了,在zookeeper上面的那个临时节点就会消失,此时所有的kafka broker又会一起去Zookeeper上注册一个临时节点,因为只有一个Kafka Broker会注册成功,其他的都会失败,所以这个成功在Zookeeper上注册临时节点的这个Kafka Broker会成为Kafka Broker Controller,其他的Kafka broker叫Kafka Broker follower。例如:一旦有一个broker宕机了,这个kafka broker controller会读取该宕机broker上所有的partition在zookeeper上的状态,并选取ISR列表中的一个replica作为partition leader(如果ISR列表中的replica全挂,选一个幸存的replica作为leader; 如果该partition的所有的replica都宕机了,则将新的leader设置为-1,等待恢复,等待ISR中的任一个Replica“活”过来,并且选它作为Leader;或选择第一个“活”过来的Replica(不一定是ISR中的)作为Leader),这个broker宕机的事情,kafka controller也会通知zookeeper,zookeeper就会通知其他的kafka broker。

二、Kafka架构

Kafka拓扑结构

在这里插入图片描述

在这里插入图片描述

三、Kafka中的术语解释概述

Broker【服务器节点】

Kafka 集群包含一个或多个服务器,服务器节点称为broker。broker存储topic的数据。

  • 如果某topic有N个partition,集群有N个broker,那么每个broker存储该topic的一个partition。

  • 如果某topic有N个partition,集群有(N+M)个broker,那么其中有N个broker存储该topic的一个partition,剩下的M个broker不存储该topic的partition数据。

  • 如果某topic有N个partition,集群中broker数目少于N个,那么一个broker存储该topic的一个或多个partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致Kafka集群数据不均衡。

Topic【主题】

每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于
一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)。类似于数据库的表名。在每个broker上都
可以创建多个topic。

Partition【分区】

在这里插入图片描述

  • topic中的数据分割为一个或多个partition。每个topic至少有一个partition。topic的数据数据会写入到不同的partition。

  • 每个Partition在物理上对应一个文件夹,该文件夹下存储这个Partition的所有消息和索引文件。

  • partition中的数据是有序的,不同partition间的数据丢失了数据的顺序。

  • 如果topic有多个partition,消费数据时就不能保证数据的顺序。

  • 在需要严格保证消息的消费顺序的场景下,需要将partition数目设为1。

上面说到数据会写入到不同的分区,那kafka为什么要做分区呢?相信大家应该也能猜到,分区的主要目的是:

  1. 方便扩展。因为一个topic可以有多个partition,所以我们可以通过扩展机器去轻松的应对日益增长的数据量。

  2. 提高并发。以partition为读写单位,可以多个消费者同时消费数据,提高了消息的处理效率。

熟悉负载均衡的朋友应该知道,当我们向某个服务器发送请求的时候,服务端可能会对请求做一个负载,将流量分发到不同的服务器,那在kafka中,如果某个topic有多个partition,producer又怎么知道该将数据发往哪个partition呢?

kafka中有几个原则:

  1. partition在写入的时候可以指定需要写入的partition,如果有指定,则写入对应的partition。

  2. 如果没有指定partition,但是设置了数据的key,则会根据key的值hash出一个partition。

  3. 如果既没指定partition,又没有设置key,则会轮询选出一个partition。

保证消息不丢失是一个消息队列中间件的基本保证,那producer在向kafka写入消息的时候,怎么保证消息不丢失呢?

那就是通过ACK应答机制!在生产者向队列写入数据的时候可以设置参数来确定是否确认kafka接收到数据,这个参数可设置的值为0、1、all。

  • 0代表producer往集群发送数据不需要等到集群的返回,不确保消息发送成功。安全性最低但是效率最高。

  • 1代表producer往集群发送数据只要leader应答就可以发送下一条,只确保leader发送成功。

  • all代表producer往集群发送数据需要所有的follower都完成从leader的同步才会发送下一条,确保leader发送成功和所有的副本都完成备份。安全性最高,但是效率最低。

最后要注意的是,如果往不存在的topic写数据,能不能写入成功呢?kafka会自动创建topic,分区和副本的数量根据默认配置都是1。

Producer【生产者】

生产者即数据的发布者,该角色将消息发布到Kafka的topic中。broker接收到生产者发送的消息后,broker将该消息追加到当前用于追加数据的segment文件中。生产者发送的消息,存储到一个partition中,生产者也可以指定数据存储的partition。

Consumer【消费者】

消费者可以从broker中读取数据。消费者可以消费多个topic中的数据。

Consumer Group【消费者组】

每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。

同一个topic下的每个partition中message只能被组(Consumer group )中的一个consumer消费,如果想让一个message可以被多个consumer消费的话,那么这些consumer必须在不同的Consumer group。所以如果想同时对一个topic做消费的话,启动多个consumer group就可以了,但是要注意的是,这里的多个consumer的消费都必须是顺序读取partition里面的message,新启动的consumer默认从partition队列最头端最新的地方开始阻塞的读message。它不能像AMQ那样可以多个BET作为consumer去互斥的(for update悲观锁)并发处理message,这是因为多个BET去消费一个Queue中的数据的时候,由于要保证不能多个线程拿同一条message,所以就需要行级别悲观所(for update),这就导致了consume的性能下降,吞吐量不够。而kafka为了保证吞吐量,只允许同一个consumer group下的一个consumer线程去访问一个partition。如果觉得效率不高的时候,可以加partition的数量来横向扩展,那么再加新的consumer thread去消费。如果想多个不同的业务都需要这个topic的数据,起多个consumer group就好了,大家都是顺序的读取message,offsite的值互不影响。这样没有锁竞争,充分发挥了横向的扩展性,吞吐量极高。这也就形成了分布式消费的概念。

当启动一个consumer group去消费一个topic的时候,无论topic里面有多少个partition,无论我们consumer group里面配置了多少个consumer thread,这个consumer group下面的所有consumer thread一定会消费全部的partition;即便这个consumer group下只有一个consumer thread,那么这个consumer thread也会去消费所有的partition。因此,最优的设计就是,consumer group下的consumer thread的数量等于partition数量,这样效率是最高的。

  • 当consumer group里面的consumer数量小于这个topic下的partition数量的时候,就会出现一个conusmer thread消费多个partition的情况,总之是这个topic下的partition都会被消费。
  • 如果consumer group里面的consumer数量等于这个topic下的partition数量的时候,此时效率是最高的,每个partition都有一个consumer thread去消费。
  • 当consumer group里面的consumer数量大于这个topic下的partition数量的时候,就会有consumer thread空闲。

多个Consumer Group下的consumer可以消费同一条message,但是这种消费也是以o(1)的方式顺序的读取message去消费,,所以一定会重复消费这批message的,不能向AMQ那样多个BET作为consumer消费(对message加锁,消费的时候不能重复消费message)

Leader【领导者】

每个partition有多个副本,其中有且仅有一个作为Leader,Leader是当前负责数据的读写的partition。

Follower【跟随者】

  • Follower跟随Leader,所有写请求都通过Leader路由,数据变更会广播给所有Follower,Follower与Leader保持数据同步。
  • 如果Leader失效,则从Follower中选举出一个新的Leader。
  • 当Follower与Leader挂掉、卡住或者同步太慢,leader会把这个follower从“in sync replicas”(ISR)列表中删除,重新创建一个Follower。

Replica【副本】

每个partition可以在其他的kafka broker节点上存副本,以便某个kafka broker节点宕机不会影响这个kafka集群。
存replica副本的方式是按照kafka broker的顺序存。
例如有5个kafka broker节点,某个topic有3个partition,每个partition存2个副本,那么partition1存broker1,broker2,partition2存broker2,broker3。。。以此类推(replica副本数目不能大于kafka broker节点的数目,否则报错。这里的replica数其实就是partition的副本总数,其中包括一个leader,其他的就是copy副本)。这样如果某个broker宕机,其实整个kafka内数据依然是完整的。但是,replica副本数越高,系统虽然越稳定,但是会带来资源和性能上的下降;replica副本少的话,也会造成系统丢数据的风险。

  • 传送消息:producer先把message发送到partition leader,再由leader发送给其他partition follower(如果让producer发送给每个replica那就太慢了)。 再向Producer发送ACK前需要保证有多少个Replica已经收到该消息:根据ack配的个数而定。

  • 处理某个Replica不工作的情况:如果这个部工作的partition replica不在ack列表中,就是producer在发送消息到partition leader上,partition leader向partition follower发送message没有响应而已,这个不会影响整个系统,也不会有什么问题。如果这个不工作的partition replica在ack列表中的话,producer发送的message的时候会等待这个不工作的partition replca写message成功,但是会等到time out,然后返回失败因为某个ack列表中的partition replica没有响应,此时kafka会自动的把这个部工作的partition replica从ack列表中移除,以后的producer发送message的时候就不会有这个ack列表下的这个部工作的partition replica了。

  • 处理Failed Replica恢复回来的情况:如果这个partition replica之前不在ack列表中,那么启动后重新受Zookeeper管理即可,之后producer发送message的时候,partition leader会继续发送message到这个partition follower上。如果这个partition replica之前在ack列表中,此时重启后,需要把这个partition replica再手动加到ack列表中。(ack列表是手动添加的,出现某个部工作的partition replica的时候自动从ack列表中移除的)。

四、Kafka可视化管理工具

【Kafka可视化工具】kafka-manager
kafka-manager安装及基本使用

【Kafka可视化工具】Offset Explorer
Kafka-Offset Explorer安装及基本使用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/41345.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

14-22 剑和远方2 - 深度神经网络中的学习机制

概论 在第一部分中,我们深入探讨了人工智能的兴衰简史以及推动人工智能发展的努力。我们研究了一个简单的感知器,以了解其组件以及简单的 ANN 如何处理数据和权重层。在简单的 ANN 中,不会对数据执行特定操作。ANN 中的激活函数是一个线性函…

flask使用定时任务flask_apscheduler(APScheduler)

Flask-APScheduler描述: Flask-APScheduler 是一个 Flask 扩展,增加了对 APScheduler 的支持。 APScheduler 有三个内置的调度系统可供您使用: Cron 式调度(可选开始/结束时间) 基于间隔的执行(以偶数间隔运行作业…

移动校园(7)ii:uniapp响应拦截器处理token,以及微信小程序报错当前页面正在处于跳转状态,请稍后再进行跳转....

依据昨天的写完,在token过期之后,再次调用接口,会触发后端拦截,扔进全局错误处理中间件 前端说明提示都没有,只有一个这个,现在优化一下,再写一个类似全局后置守卫,当状态码是401的时…

RAID 冗余磁盘阵列

RAID也是Linux操作系统中管理磁盘的一种方式。 只有Linux操作系统才支持LVM的磁盘管理方式。 而RAID是一种通用的管理磁盘的技术,使用于多种操作系统。 优势:提升数据的读写速度,提升数据的可靠性。具体实现哪什么功能,要看你所…

LVGL移植与VS模拟器使用

一、移植文件介绍 二、移植部分 第一步:创建LVGL文件夹 第二步: 构造LVGL文件夹:LVGL - GUI - lvgl - 第三步:添加文件 3.1 从examples中添加2个.c文件 3.2 从src中添加文件 draw文件 extra文件 第四步: 三、Ke…

Linux系统安装软件包的方法rpm和yum详解

起因: 本篇文章是记录学习Centos7的历程 关于rpm 常见命令 1)查看已经安装的软件包 rpm -q 软件包名 2)查看文件的相关信息 rpm -qi 软件包名 3)查看软件包的依赖关系 就是说要想安装这个软件包,就必须把一些前…

三级_网络技术_04_中小型网络系统总体规划与设计

1.下列关于路由器技术特征的描述中,正确的是()。 吞吐量是指路由器的路由表容量 背板能力决定了路由器的吞吐量 语音、视频业务对延时抖动要求较低 突发处理能力是以最小帧间隔值来衡量的 2.下列关于路由器技术特征的描述中,正确的是()。 路由器的…

springboot公寓租赁系统-计算机毕业设计源码03822

摘要 1 绪论 1.1 研究背景与意义 1.2选题背景 1.3论文结构与章节安排 2 公寓租赁系统系统分析 2.1 可行性分析 2.1.1 技术可行性分析 2.1.2 经济可行性分析 2.1.3 法律可行性分析 2.2 系统功能分析 2.2.1 功能性分析 2.2.2 非功能性分析 2.3 系统用例分析 2.4 系…

韦东山嵌入式linux系列-第一个实验

1 前言 笔者使用的是韦东山STM32MP157 Pro的板子,环境搭建部分按照说明文档配置完成。配置桥接网卡实现板子、windows、ubuntu的通信,也在开发板挂载 Ubuntu 的NFS目录 ,这里就不再赘述了。 板子: 192.168.5.9 windows: 192.168.5.10 ubunt…

机械键盘如何挑选

机械键盘的选择是一个关键的决策,因为它直接影响到我们每天的打字体验。在选择机械键盘时,有几个关键因素需要考虑。首先是键盘的键轴类型。常见的键轴类型包括蓝轴、红轴、茶轴和黑轴等。不同的键轴类型具有不同的触发力、触发点和声音。蓝轴通常具有明…

聚类分析方法(一)

目录 一、聚类分析原理(一)聚类分析概述(二)聚类的数学定义(三)簇的常见类型(四)聚类框架及性能要求(五)簇的距离 二、划分聚类算法(一&#xff0…

Java 有什么必看的书?

Java必看经典书有这两本: 1、Java核心技术速学版(第3版) 经典Java开发基础书CoreJava速学版本!Java入门优选书籍,更新至Java17,内容皆是精华,让Java学习更简单,让Java知识应用更快速…

【Linux】什么是进程间通信?方式有哪些?本质理解?

💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃个人主页 :阿然成长日记 …

NoSQL 之 Redis 集群部署

前言: (1)主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用 的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷: 故障…

vue3+antd 实现文件夹目录右键菜单功能

原本的目录结构&#xff1a; 右键菜单&#xff1a; 点击菜单以后会触发回调&#xff1a; 完整的前端代码&#xff1a; <template><a-directory-treev-model:expandedKeys"expandedKeys"v-model:selectedKeys"selectedKeys"multipleshow-li…

在 Docker 容器中运行 Vite 开发环境,有这两个问题要注意

容器化开发给我们带来了很多便捷&#xff0c;但是在开发环境下也有一些问题要注意&#xff0c;如果不解决这些问题&#xff0c;你的开发体验不会很好。 容器启动正常&#xff0c;却无法访问 我们用 Docker 启动一个 Vite Vue3 项目的开发环境后&#xff0c;发现端口日志一切…

计算机如何存储浮点数

浮点数组成 在计算机中浮点数通常由三部分组成&#xff1a;符号位、指数位、尾数位。IEEE-754中32位浮点数如下&#xff1a; 上图32bit浮点数包含1bit的符号位&#xff0c;8比特的指数位和23bit的尾数位。对于一个常规浮点数&#xff0c;我们来看看它是如何存储和计算的。这里…

conda env pip install error:No space left on device

conda 环境 pip install error&#xff1a;No space left on device 文章目录 conda 环境 pip install error&#xff1a;No space left on device现象1 实验2 分析和解决办法 现象 非root用户的服务器&#xff0c;需要安装环境&#xff0c;安装的环境超过2GB sudo pip insta…

医疗机器人中的具身智能进展——自主超声策略模型的任务编码和局部探索

医疗机器人一直是具身智能的研究热点。医学图像、医疗触诊、血压血氧、心率脉搏和生物电信号等多模态生物医学信息&#xff0c;不断丰富着医疗机器人的感知范畴。 自主超声 “自主超声”属于具身智能医疗机器人领域中话题度较高的研究方向。作为临床检查的重要手段之一&#…

线性系统理论及应用GUI设计及仿真

目录 1.控制系统的状态空间模型 1.1.状态空间模型 1.2 传递函数模型 1.3 传递函数转换为状态空间模型 1.4.状态空间模型转换为传递函数 1.5.状态空间模型转化为约当标准型 2.线性系统的时域分析 2.1.矩阵指数函数的计算 2.2.线型定常连续系统的状态空间模型求解 3.线…