DatawhaleAI夏令营2024 Task2

#AI夏令营 #Datawhale #夏令营

  • 赛题解析
  • 一、Baseline详解
    • 1.1 环境配置
    • 1.2 数据处理任务理解
    • 2.3 prompt设计
    • 2.4 数据抽取
  • 二、完整代码
  • 总结


赛题解析

  1. 赛事背景
    在数字化时代,企业积累了大量对话数据,这些数据不仅是交流记录,还隐藏着宝贵的信息。群聊对话分角色要素提取是企业营销和服务的重要策略,通过分析这些数据,企业可以更好地理解客户需求,提供个性化服务,提升客户满意度和商业价值。
  2. 赛事任务
    从给定的<客服>与<客户>的群聊对话中,提取出指定的字段信息,具体待提取的字段信息见下文。
  3. 数据说明
序号字段名称是否单值是否可空难度分数答案是否唯一
1基本信息-姓名1
2基本信息-手机号码1
3基本信息-邮箱1
4基本信息-地区1
5基本信息-详细地址1
6基本信息-性别1
7基本信息-年龄1
8基本信息-生日1
9咨询类型2
10意向产品3
11购买异议点3
12客户预算-预算是否充足2
13客户预算-总体预算金额2
14客户预算-预算明细3
15竞品信息2
16客户是否有意向1
17客户是否有卡点1
18客户购买阶段2
19下一步跟进计划-参与人2
20下一步跟进计划-时间点2
21下一步跟进计划-具体事项3
备注
1. 可为空的字段,当判定无相应信息、无法做出判断等情况,统一取值为空字符串。
2. 对于非单值字段,请使用列表(list)来表示。
  1. 平台说明
    参赛选手需基于讯飞星火大模型V3.5完成任务。允许使用大模型微调的方式进行信息抽取, 但微调的基座模型仅限星火大模型。
    关于星火V3.5资源,组委会将为报名参赛选手统一发放API资源福利,选手用个人参赛账号登录讯飞开放平台 ,前往控制台中查看使用。关于微调训练资源,选手用参赛账户登陆大模型训练平台,可领取本次比赛的训练资源福利。

  2. 评审规则
    测试集的每条数据同样包含共21个字段, 按照各字段难易程度划分总计满分36分。每个提取正确性的判定标准如下:

    1)对于答案唯一字段,将使用完全匹配的方式计算提取是否正确,提取正确得到相应分数,否则为0分

    2)对于答案不唯一字段,将综合考虑提取完整性、语义相似度等维度判定提取的匹配分数,最终该字段得分为 “匹配分数 * 该字段难度分数”

    每条测试数据的最终得分为各字段累计得分。最终测试集上的分数为所有测试数据的平均得分。

  3. 作品提交要求

    1、文件格式:按照 json格式提交

    2、文件大小:无要求

    3、提交次数限制:每支队伍每天最多3次

    4、文件详细说明:编码为UTF-8,具体格式参考提交示例

    5、关于大模型的使用说明&限制。

    • 如果使用大模型进行信息抽取, 本次仅限使用星火大模型。

    • 为了排除人工校验、修正等作弊方式,本次比赛除了提交答案之外,排行榜前3名选手需要提供完整的源代码进行审核,要求抽取的结果必须可以准确复现。

    • 注:排行榜前3名有审核不通过现象时,依次按得分顺延。满分36分,原则上最终入围决赛三甲得分不得低于20分。

    • 允许使用大模型微调的方式进行信息抽取, 微调的基座模型仅限星火大模型。


一、Baseline详解

基于星火大模型的群聊对话分角色要素提取挑战-baseline - 飞桨AI Studio星河社区 (baidu.com)

1.1 环境配置

  1. 环境配置
!pip install --upgrade -q spark_ai_python tqdm
  1. 大模型api配置
#星火认知大模型Spark3.5 Max的URL值,其他版本大模型URL值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_URL = 'wss://spark-api.xf-yun.com/v3.5/chat'
#星火认知大模型调用秘钥信息,请前往讯飞开放平台控制台(https://console.xfyun.cn/services/bm35)查看
SPARKAI_APP_ID = ''
SPARKAI_API_SECRET = ''
SPARKAI_API_KEY = ''
#星火认知大模型Spark3.5 Max的domain值,其他版本大模型domain值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_DOMAIN = 'generalv3.5'

1.2 数据处理任务理解

简单读取训练集和测试集,了解任务的具体要求
在这里插入图片描述
简单理解为从日常杂乱的聊天数据中自动抽取出结构化的数据

import jsondef read_json(json_file_path):"""读取json文件"""with open(json_file_path, 'r') as f:data = json.load(f)return datadef write_json(json_file_path, data):"""写入json文件"""with open(json_file_path, 'w') as f:json.dump(data, f, ensure_ascii=False, indent=4)# 读取数据
train_data = read_json("dataset/train.json")
test_data = read_json("dataset/test_data.json")# 查看对话数据
print(train_data[100]['chat_text'])

2.3 prompt设计

  1. 设计思路: 任务目标——抽取数据定义——抽取内容引入——抽取规则强调
  2. 设计内容:
# prompt 设计
PROMPT_EXTRACT = """
你将获得一段群聊对话记录。你的任务是根据给定的表单格式从对话记录中提取结构化信息。在提取信息时,请确保它与类型信息完全匹配,不要添加任何没有出现在下面模式中的属性。表单格式如下:
info: Array<Dict("基本信息-姓名": string | "",  // 客户的姓名。"基本信息-手机号码": string | "",  // 客户的手机号码。"基本信息-邮箱": string | "",  // 客户的电子邮箱地址。"基本信息-地区": string | "",  // 客户所在的地区或城市。"基本信息-详细地址": string | "",  // 客户的详细地址。"基本信息-性别": string | "",  // 客户的性别。"基本信息-年龄": string | "",  // 客户的年龄。"基本信息-生日": string | "",  // 客户的生日。"咨询类型": string[] | [],  // 客户的咨询类型,如询价、答疑等。"意向产品": string[] | [],  // 客户感兴趣的产品。"购买异议点": string[] | [],  // 客户在购买过程中提出的异议或问题。"客户预算-预算是否充足": string | "",  // 客户的预算是否充足。示例:充足, 不充足"客户预算-总体预算金额": string | "",  // 客户的总体预算金额。"客户预算-预算明细": string | "",  // 客户预算的具体明细。"竞品信息": string | "",  // 竞争对手的信息。"客户是否有意向": string | "",  // 客户是否有购买意向。示例:有意向, 无意向"客户是否有卡点": string | "",  // 客户在购买过程中是否遇到阻碍或卡点。示例:有卡点, 无卡点"客户购买阶段": string | "",  // 客户当前的购买阶段,如合同中、方案交流等。"下一步跟进计划-参与人": string[] | [],  // 下一步跟进计划中涉及的人员(客服人员)。"下一步跟进计划-时间点": string | "",  // 下一步跟进的时间点。"下一步跟进计划-具体事项": string | ""  // 下一步需要进行的具体事项。
)>请分析以下群聊对话记录,并根据上述格式提取信息:**对话记录:**{content}请将提取的信息以JSON格式输出。
不要添加任何澄清信息。
输出必须遵循上面的模式。
不要添加任何没有出现在模式中的附加字段。
不要随意删除字段。**输出:**[{{"基本信息-姓名": "姓名","基本信息-手机号码": "手机号码","基本信息-邮箱": "邮箱","基本信息-地区": "地区","基本信息-详细地址": "详细地址","基本信息-性别": "性别","基本信息-年龄": "年龄","基本信息-生日": "生日","咨询类型": ["咨询类型"],"意向产品": ["意向产品"],"购买异议点": ["购买异议点"],"客户预算-预算是否充足": "充足或不充足","客户预算-总体预算金额": "总体预算金额","客户预算-预算明细": "预算明细","竞品信息": "竞品信息","客户是否有意向": "有意向或无意向","客户是否有卡点": "有卡点或无卡点","客户购买阶段": "购买阶段","下一步跟进计划-参与人": ["跟进计划参与人"],"下一步跟进计划-时间点": "跟进计划时间点","下一步跟进计划-具体事项": "跟进计划具体事项"
}}, ...]"""

2.4 数据抽取

使用prompt进行调试发现以下几个问题:
1. 大模型总是不能直接输出python直接可读取的json格式,如:

[{"基本信息-姓名": "张三","基本信息-手机号码": "12345678901","基本信息-邮箱": "zhangsan@example.com","基本信息-地区": "北京市","基本信息-详细地址": "朝阳区某街道","基本信息-性别": "男","基本信息-年龄": "30","基本信息-生日": "1990-01-01","咨询类型": ["询价"],"意向产品": ["产品A"],"购买异议点": ["价格高"],"客户预算-预算是否充足": "充足","客户预算-总体预算金额": "10000","客户预算-预算明细": "详细预算内容","竞品信息": "竞争对手B","客户是否有意向": "有意向","客户是否有卡点": "无卡点","客户购买阶段": "合同中","下一步跟进计划-参与人": ["客服A"],"下一步跟进计划-时间点": "2024-07-01","下一步跟进计划-具体事项": "沟通具体事项"}
]
  故使用函数convert_all_json_in_text_to_dict对json数据进行提取
def convert_all_json_in_text_to_dict(text):"""提取LLM输出文本中的json字符串"""dicts, stack = [], []for i in range(len(text)):if text[i] == '{':stack.append(i)elif text[i] == '}':begin = stack.pop()if not stack:dicts.append(json.loads(text[begin:i+1]))return dicts
  1. 大模型偶尔会出现缺少字段的情况,故使用check_and_complete_json_format函数对大模型抽取的结果进行字段格式的检查以及缺少的字段进行补全。

二、完整代码

# 数据导入
from sparkai.llm.llm import ChatSparkLLM, ChunkPrintHandler
from sparkai.core.messages import ChatMessage
import json
from tqdm import tqdm
---
#星火认知大模型Spark3.5 Max的URL值,其他版本大模型URL值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_URL = 'wss://spark-api.xf-yun.com/v3.5/chat'
#星火认知大模型调用秘钥信息,请前往讯飞开放平台控制台(https://console.xfyun.cn/services/bm35)查看
SPARKAI_APP_ID = ''
SPARKAI_API_SECRET = ''
SPARKAI_API_KEY = ''
#星火认知大模型Spark3.5 Max的domain值,其他版本大模型domain值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_DOMAIN = 'generalv3.5'
---
# 测试模型配置是否正确
def get_completions(text):messages = [ChatMessage(role="user",content=text)]spark = ChatSparkLLM(spark_api_url=SPARKAI_URL,spark_app_id=SPARKAI_APP_ID,spark_api_key=SPARKAI_API_KEY,spark_api_secret=SPARKAI_API_SECRET,spark_llm_domain=SPARKAI_DOMAIN,streaming=False,)handler = ChunkPrintHandler()a = spark.generate([messages], callbacks=[handler])return a.generations[0][0].texttext = "你好"
get_completions(text)
---
# prompt 设计
PROMPT_EXTRACT = """
你将获得一段群聊对话记录。你的任务是根据给定的表单格式从对话记录中提取结构化信息。在提取信息时,请确保它与类型信息完全匹配,不要添加任何没有出现在下面模式中的属性。表单格式如下:
info: Array<Dict("基本信息-姓名": string | "",  // 客户的姓名。"基本信息-手机号码": string | "",  // 客户的手机号码。"基本信息-邮箱": string | "",  // 客户的电子邮箱地址。"基本信息-地区": string | "",  // 客户所在的地区或城市。"基本信息-详细地址": string | "",  // 客户的详细地址。"基本信息-性别": string | "",  // 客户的性别。"基本信息-年龄": string | "",  // 客户的年龄。"基本信息-生日": string | "",  // 客户的生日。"咨询类型": string[] | [],  // 客户的咨询类型,如询价、答疑等。"意向产品": string[] | [],  // 客户感兴趣的产品。"购买异议点": string[] | [],  // 客户在购买过程中提出的异议或问题。"客户预算-预算是否充足": string | "",  // 客户的预算是否充足。示例:充足, 不充足"客户预算-总体预算金额": string | "",  // 客户的总体预算金额。"客户预算-预算明细": string | "",  // 客户预算的具体明细。"竞品信息": string | "",  // 竞争对手的信息。"客户是否有意向": string | "",  // 客户是否有购买意向。示例:有意向, 无意向"客户是否有卡点": string | "",  // 客户在购买过程中是否遇到阻碍或卡点。示例:有卡点, 无卡点"客户购买阶段": string | "",  // 客户当前的购买阶段,如合同中、方案交流等。"下一步跟进计划-参与人": string[] | [],  // 下一步跟进计划中涉及的人员(客服人员)。"下一步跟进计划-时间点": string | "",  // 下一步跟进的时间点。"下一步跟进计划-具体事项": string | ""  // 下一步需要进行的具体事项。
)>请分析以下群聊对话记录,并根据上述格式提取信息:**对话记录:**{content}请将提取的信息以JSON格式输出。
不要添加任何澄清信息。
输出必须遵循上面的模式。
不要添加任何没有出现在模式中的附加字段。
不要随意删除字段。**输出:**[{{"基本信息-姓名": "姓名","基本信息-手机号码": "手机号码","基本信息-邮箱": "邮箱","基本信息-地区": "地区","基本信息-详细地址": "详细地址","基本信息-性别": "性别","基本信息-年龄": "年龄","基本信息-生日": "生日","咨询类型": ["咨询类型"],"意向产品": ["意向产品"],"购买异议点": ["购买异议点"],"客户预算-预算是否充足": "充足或不充足","客户预算-总体预算金额": "总体预算金额","客户预算-预算明细": "预算明细","竞品信息": "竞品信息","客户是否有意向": "有意向或无意向","客户是否有卡点": "有卡点或无卡点","客户购买阶段": "购买阶段","下一步跟进计划-参与人": ["跟进计划参与人"],"下一步跟进计划-时间点": "跟进计划时间点","下一步跟进计划-具体事项": "跟进计划具体事项"
}}, ...]"""
---
# 读取数据
def read_json(json_file_path):"""读取json文件"""with open(json_file_path, 'r') as f:data = json.load(f)return datadef write_json(json_file_path, data):"""写入json文件"""with open(json_file_path, 'w') as f:json.dump(data, f, ensure_ascii=False, indent=4)def get_completions(text):messages = [ChatMessage(role="user",content=text)]spark = ChatSparkLLM(spark_api_url=SPARKAI_URL,spark_app_id=SPARKAI_APP_ID,spark_api_key=SPARKAI_API_KEY,spark_api_secret=SPARKAI_API_SECRET,spark_llm_domain=SPARKAI_DOMAIN,streaming=False,)handler = ChunkPrintHandler()a = spark.generate([messages], callbacks=[handler])return a.generations[0][0].textdef convert_all_json_in_text_to_dict(text):"""提取LLM输出文本中的json字符串"""dicts, stack = [], []for i in range(len(text)):if text[i] == '{':stack.append(i)elif text[i] == '}':begin = stack.pop()if not stack:dicts.append(json.loads(text[begin:i+1]))return dictsclass JsonFormatError(Exception):def __init__(self, message):self.message = messagesuper().__init__(self.message)def check_and_complete_json_format(data):required_keys = {"基本信息-姓名": str,"基本信息-手机号码": str,"基本信息-邮箱": str,"基本信息-地区": str,"基本信息-详细地址": str,"基本信息-性别": str,"基本信息-年龄": str,"基本信息-生日": str,"咨询类型": list,"意向产品": list,"购买异议点": list,"客户预算-预算是否充足": str,"客户预算-总体预算金额": str,"客户预算-预算明细": str,"竞品信息": str,"客户是否有意向": str,"客户是否有卡点": str,"客户购买阶段": str,"下一步跟进计划-参与人": list,"下一步跟进计划-时间点": str,"下一步跟进计划-具体事项": str}if not isinstance(data, list):raise JsonFormatError("Data is not a list")for item in data:if not isinstance(item, dict):raise JsonFormatError("Item is not a dictionary")for key, value_type in required_keys.items():if key not in item:item[key] = [] if value_type == list else ""if not isinstance(item[key], value_type):raise JsonFormatError(f"Key '{key}' is not of type {value_type.__name__}")if value_type == list and not all(isinstance(i, str) for i in item[key]):raise JsonFormatError(f"Key '{key}' does not contain all strings in the list")if __name__ == "__main__":retry_count = 5 # 重试次数result = []error_data = []# 读取数据train_data = read_json("dataset/train.json")test_data = read_json("dataset/test_data.json")for index, data in tqdm(enumerate(test_data)):index += 1is_success = Falsefor i in range(retry_count):try:res = get_completions(PROMPT_EXTRACT.format(content=data["chat_text"]))infos = convert_all_json_in_text_to_dict(res)infos = check_and_complete_json_format(infos)result.append({"infos": infos,"index": index})is_success = Truebreakexcept Exception as e:print("index:", index, ", error:", e)continueif not is_success:data["index"] = indexerror_data.append(data)write_json("output.json", result)

总结

进行了赛题分析,任务理解
使用prompt解决信息抽取任务
保证大模型处理数据与输出格式的稳定性
后续进行prompt优化或者引入其他方法来确保信息抽取的准确度

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/41000.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【鸿蒙学习笔记】@Link装饰器:父子双向同步

官方文档&#xff1a;Link装饰器&#xff1a;父子双向同步 目录标题 [Q&A] Link装饰器作用 [Q&A] Link装饰器特点样例&#xff1a;简单类型样例&#xff1a;数组类型样例&#xff1a;Map类型样例&#xff1a;Set类型样例&#xff1a;联合类型 [Q&A] Link装饰器作用…

信号与系统-实验6-离散时间系统的 Z 域分析

一、实验目的 1、掌握 z 变换及其性质&#xff1b;了解常用序列的 z 变换、逆 z 变换&#xff1b; 2、掌握利用 MATLAB 的符号运算实现 z 变换&#xff1b; 3、掌握利用 MATLAB 绘制离散系统零、极点图的方法&#xff1b; 4、掌握利用 MATLAB 分析离散系统零、极点的方法&a…

MySQL基础篇(二)字符集以及校验规则

在MySQL基础篇&#xff08;一&#xff09;中&#xff0c;我们知道了如何创建数据库&#xff0c;这篇文章带大家了解创建的一些细节。 红色框&#xff1a;可省略&#xff0c;作用如果存在相同的数据库名称&#xff0c;就不会再创建&#xff0c;反之&#xff0c;创建。 蓝色框&…

uniapp 封装请求

新建request文件夹 下新建index.js 和index.js 或者创建units文件放入index.js 和api文件夹放入index.js(api.js)//看公司规范 1. index.js // 全局请求封装 // const base_url http://localhost:8080/devapi var base_url process.env.NODE_ENV development ? http://…

可用于多个微信管理的神器

以下仅是多微信聚合聊天管理界面&#xff1a; 可以在一个页面上同时收发多个微信的消息&#xff0c;可以添加好友&#xff0c;通过好友请求。 可以修改昵称&#xff0c;不受字数限制。 可以将常用图片&#xff0c;文件等放入素材库&#xff0c;方便聊天时查找和发送。 可以设置…

搜索旋转数组

题目链接 搜索旋转数组 题目描述 注意点 数组已被旋转过很多次数组元素原先是按升序排列的若有多个相同元素&#xff0c;返回索引值最小的一个 解答思路 首先需要知道的是&#xff0c;本题数组中的旋转多次只是将头部的某些元素移动到尾部&#xff0c;所以不论怎么旋转&am…

Pycharm python解释器 unsupported python 3.1 解决

Pycharm 环境 unsupported python 3.1解决 1. 问题重现2. 原因分析3. 解决方法 1. 问题重现 之前使用Pycharm 2024.1.1的时候&#xff0c;环境配置的Python 3.11.9&#xff0c;现在改成使用Pycharm 2020.2.2&#xff0c;结果Python解释器显示“unsupported python 3.1”&#…

陈志泊主编《数据库原理及应用教程第4版微课版》的实验题目参考答案实验2

实验目的 1&#xff0e;掌握在SQL Server中使用对象资源管理器和SQL命令创建数据库与修改数据库的方法。 2&#xff0e;掌握在SQL Server中使用对象资源管理器或者SQL命令创建数据表和修改数据表的方 法&#xff08;以SQL命令为重点&#xff09;。 实验设备 操作系统:Win11…

使用Source Insight 4.0

一、使用书签 二、添加文件 三、Search 3.1 替换所有变量 四、右键查询 4.1 查看被调用的地方

GRPC使用之HelloWorld

使用grpc的好处是提供高效的序列化能力&#xff0c;能够跨语言进行调用。这一节我们来学习grpc的入门应用&#xff0c;整篇文章分成3部分: 接口定义&#xff0c;使用grpc的IDL&#xff0c;创建proto文件&#xff0c;编译/生成grpc文件服务端开发&#xff0c;处理客户端请求&am…

计算云服务1

前言 一直以来&#xff0c;计算资源都是整个企业业务系统发展所需的大动脉&#xff0c;没有计算资源&#xff0c;企业业务就无法正常运行。在云计算的时代里&#xff0c;计算服务也是云服务中的第一大类服务&#xff0c;计算资源的重要性由此可见。本章&#xff0c;我们将带领…

C++之do-while陈述

回圈是用来进行进行重复性的工作&#xff0c;典型的回圈会进行下列三项基本任务 1.控制变数初始设定2. 回圈结束条件测试3. 调整控制变数的值 关键字(keyword) do与while构成C 中回圈的一种&#xff0c;常用于后测式的回圈&#xff0c;意思是回圈会先进行第一轮&#xff0c;然后…

017-GeoGebra基础篇-微积分函数求解圆弧面积问题

基础篇慢慢的走进尾声&#xff0c;今天给大家带来一个小项目&#xff0c;是关于高中数学微积分部分的展示&#xff0c;这个项目主要包含了函数的介绍、函数与图形绘制的区别、区域函数图像的绘制、积分函数的应用、动态文本的调用、嵌套滑动条的应用等等&#xff0c;以及其他常…

基于Transformer神经网络的锂离子电池剩余使用寿命估计MATLAB实现【NASA电池数据集】

Transformer神经网络 基于Transformer神经网络的锂离子电池剩余使用寿命估计是一种先进的方法&#xff0c;它利用了Transformer模型在处理序列数据方面的优势。 Transformer能够有效地捕捉时间序列中的长程依赖关系和非线性模式&#xff0c;相比传统的基于循环神经网络&…

Github:git提交代码到github

创建 GitHub 仓库 a. 登录到您的 GitHub 账户。 b. 点击右上角的 "" 图标&#xff0c;选择 "New repository"。 c. 填写仓库名称&#xff08;例如 "Mitemer"&#xff09;。 d. 添加项目描述&#xff08;可选&#xff09;。 e. 选择仓库为 &…

第一天(点亮led灯+led灯闪烁)——Arduino uno R3 学习之旅

​ 常识: 一般智能手机的额定工作电流大约为200mA Arduino Uno板上I/0(输入/输出)引脚最大输出电流为40 mA Uno板控制器总的输出电流为200 mA 点亮LED灯 发光二极管介绍 发光二极管(Light Emitting Diode&#xff0c;简称LED)是一种能够将电能转化为光能的固态的半导体器件…

【论文解读】LivePortrait:具有拼接和重定向控制的高效肖像动画

&#x1f4dc; 文献卡 英文题目: LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control;作者: Jianzhu Guo; Dingyun Zhang; Xiaoqiang Liu; Zhizhou Zhong; Yuan Zhang; Pengfei Wan; Di ZhangDOI: 10.48550/arXiv.2407.03168摘要翻译: *旨在…

【MySQL】表的操作{创建/查看/修改/删除}

文章目录 1.创建表1.1comment&#xff1a;注释信息1.2存储引擎 2.查看表3.修改表3.1add添加列&#xff0c;对原数据无影响3.2drop删除列3.3modify修改列类型3.4change修改列名3.5rename [to]修改表名 4.删除表5.总结 1.创建表 CREATE TABLE table_name (field1 datatype,field…

AI行业的非零和博弈:解读Mustafa Suleyman的观点

引言 在人工智能&#xff08;AI&#xff09;领域&#xff0c;微软AI公司的CEO Mustafa Suleyman最近在阿斯彭思想节上的访谈引起了广泛关注。与CNBC记者Andrew Ross Sorkin的对话中&#xff0c;Suleyman不仅分享了他对OpenAI人事变动的看法&#xff0c;还深入探讨了AI行业的现…

FRP反向隧道代理打CFS三层

目录 攻击机 查看服务端frps.ini配置文件 开启服务端frps 蚁剑打目标机 上传客户端frp到目标机 ​frpc.ini文件配置成 客户端打开代理frpc vps显示成功客户端frpc打开 访问成功192.168.22.22的第二层内网主机 省去前面漏洞利用的rce过程&#xff0c;直接蚁剑开搞隧道…