昇思25天学习打卡营第2天|MindSpore快速入门

打卡

目录

打卡

快速入门案例:minist图像数据识别任务

案例任务说明

流程

1 加载并处理数据集

2 模型网络构建与定义

3 模型约束定义

4 模型训练

5 模型保存

6 模型推理

相关参考文档入门理解

MindSpore数据处理引擎

模型网络参数初始化

模型优化器

损失函数

代码

安装

从模型训练到预测推理

self_main_train_and_save.py

self_dataprocess.py

self_network.py

self_modeltrain.py

self_modeltest.py

self_predict.py


快速入门案例:minist图像数据识别任务

案例任务说明

MINIST数据集是有标签的图像数据,图像数据是0-9的手写阿拉伯数字。其中,训练集有6W个,测试集1W个。

目的是训练一个可以高效识别手写阿拉伯数字的模型。

流程

1 加载并处理数据集

涉及到的mindspore接口 mindspore.dataset。例如对数据集的map、batch、shuffle等操作,数据列名获取,对数据集进行迭代访问、查看数据和标签的shape和datatype等。

2 模型网络构建与定义

涉及到 mindspore.nn 类。例如用户可继承nn.Cell类来自定义网络结构,其中的construct类函数包含数据(Tensor)的变换过程。。

3 模型约束定义

包括损失函数、优化器等。如 nn.CrossEntropyLoss() 、nn.SGD(model.trainable_params(), 1e-2)

4 模型训练

- 定义训练函数,用set_train设置为训练模式,执行正向计算、反向传播和参数优化。

- 定义测试函数,用来评估模型的性能。

5 模型保存

- 两种保存方式:

1)模型参数保存:mindspore.save_checkpoint(model, "model.ckpt")

2)统一的中间表示(Intermediate Representation,IR)的保存,MindIR同时保存了Checkpoint和模型结构,因此需要定义输入Tensor来获取输入shape。mindspore.export(model, inputs, file_name="model", file_format="MINDIR")

6 模型推理

- 两种加载方式:

1)模型参数加载: 

> model = network()

> param_dict = mindspore.load_checkpoint("model.ckpt");  

param_not_load, _ = mindspore.load_param_into_net(model, param_dict)

2)统一的中间表示(Intermediate Representation,IR)的加载:

> mindspore.set_context(mode=mindspore.GRAPH_MODE)
> graph = mindspore.load("model.mindir")
> model = nn.GraphCell(graph)  ## nn.GraphCell 仅支持图模式。
> outputs = model(inputs)

保存与加载 — MindSpore master 文档

相关参考文档入门理解

MindSpore数据处理引擎

MindSpore 通过对外暴露API层来构建数据图;内部的Data Processing Pipeline 层用来进行数据加载和预处理多步并行流水线。
高性能数据处理引擎 — MindSpore master 文档

MindSpore 通过数据集(Dataset)和数据变换(Transforms)实现高效的数据预处理。

数据集 Dataset — MindSpore master 文档

数据变换 Transforms — MindSpore master 文档

模型网络参数初始化

Initializer是MindSpore内置的参数初始化基类,所有内置参数初始化方法均继承该类。mindspore.nn中提供的神经网络层封装均提供weight_initbias_init等入参,可以直接使用实例化的Initializer进行参数初始化。

参数初始化 — MindSpore master 文档

模型优化器

优化器 — MindSpore master 文档

损失函数

损失函数 — MindSpore master 文档

代码

安装

pip/conda均可:

pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.3.0rc1

从模型训练到预测推理

训练:

python self_main_train_and_save.py

推理:

python self_predict.py

self_main_train_and_save.py

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset# 用download库从公开华为云obs桶下载 MINIST 数据集并解压。因为mindspore.dataset 提供的接口仅支持解压后的数据文件 
from download import download
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)    ## 1 加载数据集
train_dataset = MnistDataset('MNIST_Data/train', shuffle=False)
test_dataset = MnistDataset('MNIST_Data/test')
print(train_dataset.get_col_names())   # 打印数据集中包含的数据列名,用于dataset的预处理。输出['image', 'label']## 2 MindSpore的dataset使用数据处理流水线,这里将处理好的数据集打包为大小为64的batch。
from self_dataprocess import datapipe
# Map vision transforms and batch dataset
train_dataset = datapipe(train_dataset, 64)  
test_dataset = datapipe(test_dataset, 64)  ## 3 数据集加载后,一般以迭代方式获取数据,然后送入神经网络中进行训练。可使用create_tuple_iterator 或create_dict_iterator对数据集进行迭代访问,查看数据和标签的shape和datatype。
for image, label in test_dataset.create_tuple_iterator():print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")print(f"Shape of label: {label.shape} {label.dtype}")break“”“Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32Shape of label: (64,) Int32”“”
for data in test_dataset.create_dict_iterator():print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")break## 4 模型训练
from self_network import Network
from self_modeltrain import train, loss_fn 
from self_modelteset import test
model = Network()
epochs = 3
for t in range(epochs):print(f"Epoch {t+1}\n-------------------------------")train(model, train_dataset)test(model, test_dataset, loss_fn)
print("Done!")## 5 保存模型
# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")

self_dataprocess.py

from mindspore.dataset import vision, transforms
def datapipe(dataset, batch_size):image_transforms = [vision.Rescale(1.0 / 255.0, 0),vision.Normalize(mean=(0.1307,), std=(0.3081,)),vision.HWC2CHW()]label_transform = transforms.TypeCast(mindspore.int32)dataset = dataset.map(image_transforms, 'image')dataset = dataset.map(label_transform, 'label')dataset = dataset.batch(batch_size)return dataset

self_network.py

# Define model
from mindspore import nnclass Network(nn.Cell): def __init__(self):super().__init__()self.flatten = nn.Flatten()self.dense_relu_sequential = nn.SequentialCell(nn.Dense(28*28, 512),nn.ReLU(),nn.Dense(512, 512),nn.ReLU(),nn.Dense(512, 10))def construct(self, x):x = self.flatten(x)logits = self.dense_relu_sequential(x)return logitsdef check_network():model = Network()print(model)

self_modeltrain.py

# Instantiate loss function and optimizer
from mindspore import nnloss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)# 1. Define forward function
def forward_fn(data, label):logits = model(data)loss = loss_fn(logits, label)return loss, logits# 2. Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)# 3. Define function of one-step training
def train_step(data, label):(loss, _), grads = grad_fn(data, label)optimizer(grads)return lossdef train(model, dataset):size = dataset.get_dataset_size()model.set_train()     ## 设置当前Cell和所有子Cell的训练模式。对于训练和预测具有不同结构的网络层(如 BatchNorm),将通过这个属性区分分支。如果设置为True,则执行训练分支,否则执行另一个分支。默认Truefor batch, (data, label) in enumerate(dataset.create_tuple_iterator()):loss = train_step(data, label)if batch % 100 == 0:loss, current = loss.asnumpy(), batchprint(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

self_modeltest.py

from mindspore import nn def test(model, dataset, loss_fn):num_batches = dataset.get_dataset_size()model.set_train(False)total, test_loss, correct = 0, 0, 0for data, label in dataset.create_tuple_iterator():pred = model(data)total += len(data)test_loss += loss_fn(pred, label).asnumpy()correct += (pred.argmax(1) == label).asnumpy().sum()test_loss /= num_batchescorrect /= totalprint(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

self_predict.py

## 加载模型
from self_network import Network# Instantiate a random initialized model
model = Network()# Load checkpoint and load parameter to model
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)  
print(param_not_load)   ## param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功。## 加载后的模型可以直接用于预测推理。
model.set_train(False)
for data, label in test_dataset:pred = model(data)predicted = pred.argmax(1)print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')break

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/40875.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何选择TikTok菲律宾直播网络?

为了满足用户对于实时互动的需求,TikTok推出了直播功能,让用户能够与粉丝即时交流。本文将探讨如何选择适合的TikTok菲律宾直播网络,并分析OgLive是否是值得信赖的选择。 TikTok菲律宾直播网络面临的挑战 作为全球领先的短视频平台&#xff…

Python + OpenCV 开启图片、写入储存图片

这篇教学会介绍OpenCV 里imread()、imshow()、waitKey() 方法,透过这些方法,在电脑中使用不同的色彩模式开启图片并显示图片。 imread() 开启图片 使用imread() 方法,可以开启图片,imread() 有两个参数,第一个参数为档…

Google Play上架:恶意软件、移动垃圾软件和行为透明度详细解析和解决办法 (一)

近期整理了许多开发者的拒审邮件和内容,也发现了许多问题,今天来说一下关于恶意软件这类拒审的问题。 目标邮件如下: 首先说一下各位小伙伴留言私信的一个方法,提供你的拒审邮件和时间,尽可能的详细,这样会帮助我们的团队了解你们的问题,去帮助小伙伴么解决问题。由于前…

集成学习(一)Bagging

前边学习了:十大集成学习模型(简单版)-CSDN博客 Bagging又称为“装袋法”,它是所有集成学习方法当中最为著名、最为简单、也最为有效的操作之一。 在Bagging集成当中,我们并行建立多个弱评估器(通常是决策…

排序——数据结构与算法 总结8

目录 8.1 排序相关概念 8.2 插入排序 8.2.1 直接插入排序: 8.2.2 折半插入排序: 8.2.3 希尔排序: 8.3 交换排序 8.3.1 冒泡排序: 8.3.2 快速排序: 8.4 选择排序 8.4.1 简单选择排序 8.4.2 堆排序 8.5 归并…

磁盘就是一个超大的Byte数组,操作系统是如何管理的?

磁盘在操作系统的维度看,就是一个“超大的Byte数组”。 那么操作系统是如何对这块“超大的Byte数组”做管理的呢? 我们知道在逻辑上,上帝说是用“文件”的概念来进行管理的。于是,便有了“文件系统”。那么,文件系统…

最新版情侣飞行棋dofm,已解锁高阶私密模式,单身狗务必绕道!(附深夜学习资源)

今天阿星要跟大家聊一款让阿星这个大老爷们儿面红耳赤的神奇游戏——情侣飞行棋。它的神奇之处就在于专为情侣设计,能让情侣之间感情迅速升温,但单身狗们请自觉绕道,不然后果自负哦! 打开游戏,界面清新,操…

HTML5使用<progress>进度条、<meter>刻度条

1、<progress>进度条 定义进度信息使用的是 progress 标签。它表示一个任务的完成进度&#xff0c;这个进度可以是不确定的&#xff0c;只是表示进度正在进行&#xff0c;但是不清楚还有多少工作量没有完成&#xff0c;也可以用0到某个最大数字&#xff08;如&#xff1…

vs2022安装qt vs tool

1 缘由 由于工作的需要&#xff0c;要在vs2022上安装qt插件进行开发。依次安装qt&#xff0c;vs2022&#xff0c;在vs2022的扩展管理中安装qt vs tool。 2 遇到困难 问题来了&#xff0c;在qt vs tool的设置qt version中出现问题&#xff0c;设置msvc_64-bit时出现提示“invali…

西安石油大学 课程习题信息管理系统(数据库课设)

主要技术栈 Java Mysql SpringBoot Tomcat HTML CSS JavaScript 该课设必备环境配置教程&#xff1a;&#xff08;参考给出的链接和给出的关键链接&#xff09; JAVA课设必备环境配置 教程 JDK Tomcat配置 IDEA开发环境配置 项目部署参考视频 若依框架 链接数据库格式注…

【中项第三版】系统集成项目管理工程师 | 第 4 章 信息系统架构① | 4.1-4.2

前言 第4章对应的内容选择题和案例分析都会进行考查&#xff0c;这一章节属于技术相关的内容&#xff0c;学习要以教材为准。本章分值预计在4-5分。 目录 4.1 架构基础 4.1.1 指导思想 4.1.2 设计原则 4.1.3 建设目标 4.1.4 总体框架 4.2 系统架构 4.2.1 架构定义 4.…

Invoice OCR

Invoice OCR 发票识别 其他类型ORC&#xff1a; DIPS_YTPC OCR-CSDN博客

25款404网页源码(上)

25款404网页源码&#xff08;上&#xff09; 1部分源码 2部分源码 3部分源码 4部分源码 5部分源码 6部分源码 7部分源码 8部分源码 9部分源码 10部分源码 11部分源码 12部分源码 领取完整源码下期更新 1 部分源码 <!DOCTYPE html> <html><!-- 优选源码 gulang.…

数据结构基础--------【二叉树基础】

二叉树基础 二叉树是一种常见的数据结构&#xff0c;由节点组成&#xff0c;每个节点最多有两个子节点&#xff0c;左子节点和右子节点。二叉树可以用来表示许多实际问题&#xff0c;如计算机程序中的表达式、组织结构等。以下是一些二叉树的概念&#xff1a; 二叉树的深度&a…

Element-UI - el-table中自定义图片悬浮弹框 - 位置优化

该篇为前一篇“Element-UI - 解决el-table中图片悬浮被遮挡问题”的优化升级部分&#xff0c;解决当图片位于页面底部时&#xff0c;显示不全问题优化。 Vue.directive钩子函数已在上一篇中详细介绍&#xff0c;不清楚的朋友可以翻看上一篇&#xff0c; “Element-UI - 解决el-…

深入刨析Redis存储技术设计艺术(二)

三、Redis主存储 3.1、存储相关结构体 redisServer:服务器 server.h struct redisServer { /* General */ pid_t pid; /* Main process pid. */ pthread_t main_thread_id; /* Main thread id */ char *configfile; /* Absolut…

Interpretability 与 Explainability 机器学习

「AI秘籍」系列课程&#xff1a; 人工智能应用数学基础人工智能Python基础人工智能基础核心知识人工智能BI核心知识人工智能CV核心知识 Interpretability 模型和 Explainability 模型之间的区别以及为什么它可能不那么重要 当你第一次深入可解释机器学习领域时&#xff0c;你会…

ubuntu 22 安装 lua 环境 编译lua cjson 模块

在 windows 下使用 cygwin 编译 lua 和 cjson 简直就是灾难&#xff0c;最后还是到 ubuntu 下完成了。 1、下载lua源码&#xff08;我下载的 5.1 版本&#xff0c;后面还有一个小插曲), 直接解压编译&#xff0c;遇到一个 readline.h not found 的问题&#xff0c;需要安装 re…

207 课程表

题目 你这个学期必须选修 numCourses 门课程&#xff0c;记为 0 到 numCourses - 1 。 在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出&#xff0c;其中 prerequisites[i] [ai, bi] &#xff0c;表示如果要学习课程 ai 则 必须 先学习课程 bi 。 …

在 PostgreSQL 中,如何处理数据的版本控制?

文章目录 一、使用时间戳字段进行版本控制二、使用版本号字段进行版本控制三、使用历史表进行版本控制四、使用 RETURNING 子句获取更新前后的版本五、使用数据库触发器进行版本控制 在 PostgreSQL 中&#xff0c;处理数据的版本控制可以通过多种方式实现&#xff0c;每种方式都…