动手学深度学习(Pytorch版)代码实践 -循环神经网络-53语言模型和数据集

53语言模型和数据集

1.自然语言统计

引入库和读取数据:

import random
import torch
from d2l import torch as d2l
import liliPytorch as lp
import numpy as np
import matplotlib.pyplot as plttokens = lp.tokenize(lp.read_time_machine())

一元语法:

# 一元语法
# 因为每个文本行不一定是一个句子或一个段落,因此我们把所有文本行拼接到一起
corpus = [token for line in tokens for token in line]
vocab = lp.Vocab(corpus)
# print(vocab.token_freqs[:5])
# [('the', 2261), ('i', 1267), ('and', 1245), ('of', 1155), ('a', 816)]
freqs = [freq for token, freq in vocab.token_freqs]
d2l.plot(freqs, xlabel='token: x', ylabel='frequency: n(x)',xscale='log', yscale='log')
plt.show()

在这里插入图片描述

二元语法:

# 二元语法
bigram_tokens = [pair for pair in zip(corpus[:-1], corpus[1:])]
bigram_vocab = lp.Vocab(bigram_tokens)
# print(bigram_vocab.token_freqs[:5])
# [(('of', 'the'), 309), (('in', 'the'), 169), (('i', 'had'), 130),
# (('i', 'was'), 112), (('and', 'the'), 109)]
freqs = [freq for token, freq in bigram_vocab.token_freqs]
d2l.plot(freqs, xlabel='token: x', ylabel='frequency: n(x)',xscale='log', yscale='log')
plt.show()

在这里插入图片描述

三元语法:

# 三元语法
trigram_tokens = [triple for triple in zip(corpus[:-2], corpus[1:-1], corpus[2:])]
trigram_vocab = lp.Vocab(trigram_tokens)
# print(trigram_vocab.token_freqs[:5])
# [(('the', 'time', 'traveller'), 59), (('the', 'time', 'machine'), 30), (('the', 'medical', 'man'), 24),
#  (('it', 'seemed', 'to'), 16), (('it', 'was', 'a'), 15)]
freqs = [freq for token, freq in trigram_vocab.token_freqs]
d2l.plot(freqs, xlabel='token: x', ylabel='frequency: n(x)',xscale='log', yscale='log')
plt.show()

在这里插入图片描述
对比:

# 一元语法、二元语法和三元语法对比
freqs = [freq for token, freq in vocab.token_freqs]
bigram_freqs = [freq for token, freq in bigram_vocab.token_freqs]
trigram_freqs = [freq for token, freq in trigram_vocab.token_freqs]
d2l.plot([freqs, bigram_freqs, trigram_freqs], xlabel='token: x',ylabel='frequency: n(x)', xscale='log', yscale='log',legend=['unigram', 'bigram', 'trigram'])
plt.show()

在这里插入图片描述

2.读取长序列数据
# n元语法,n 等于 num_steps
# 读取长序列数据
# 随机采样
def seq_data_iter_random(corpus, batch_size, num_steps):  #@save"""使用随机抽样生成一个小批量子序列"""# 从随机偏移量开始对序列进行分区,随机范围包括num_steps-1# 从一个随机位置开始截取corpus,以生成一个新的子列表# random.randint(a, b) 会生成一个范围在 a 到 b 之间的整数,并且包括 a 和 bcorpus = corpus[random.randint(0, num_steps - 1) : ]# 减去1,是因为我们需要考虑标签num_subseqs = (len(corpus) - 1) // num_steps# 长度为num_steps的子序列的起始索引initial_indices = list(range(0, num_subseqs * num_steps, num_steps))# 在随机抽样的迭代过程中,# 来自两个相邻的、随机的、小批量中的子序列不一定在原始序列上相邻random.shuffle(initial_indices)def data(pos):# 返回从pos位置开始的长度为num_steps的序列return corpus[pos: pos + num_steps]num_batches = num_subseqs // batch_sizefor i in range(0, batch_size * num_batches, batch_size):# 在这里,initial_indices包含子序列的随机起始索引initial_indices_per_batch = initial_indices[i: i + batch_size]X = [data(j) for j in initial_indices_per_batch]Y = [data(j + 1) for j in initial_indices_per_batch]yield np.array(X), np.array(Y)my_seq = list(range(35))
# for X, Y in seq_data_iter_random(my_seq, batch_size=3, num_steps=5):
#     print('X: ', X, '\nY:', Y)
"""
X:  [[14 15 16 17 18][19 20 21 22 23][ 9 10 11 12 13]]
Y: [[15 16 17 18 19][20 21 22 23 24][10 11 12 13 14]]
X:  [[24 25 26 27 28][29 30 31 32 33][ 4  5  6  7  8]]
Y: [[25 26 27 28 29][30 31 32 33 34][ 5  6  7  8  9]]
"""# 顺序分区
def seq_data_iter_sequential(corpus, batch_size, num_steps):  #@save"""使用顺序分区生成一个小批量子序列"""# 从随机偏移量开始划分序列# random.randint(a, b) 会生成一个范围在 a 到 b 之间的整数,并且包括 a 和 boffset = random.randint(0, num_steps-1)# 根据偏移量和批量大小计算出可以使用的令牌数量,确保所有批次中的样本数量一致num_tokens = ((len(corpus) - offset - 1) // batch_size) * batch_sizeXs = np.array(corpus[offset: offset + num_tokens]) # 数组Ys = np.array(corpus[offset + 1: offset + 1 + num_tokens])Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)# print(Xs)#  [[ 4  5  6  7  8  9 10 11 12 13 14 15 16 17 18]#   [19 20 21 22 23 24 25 26 27 28 29 30 31 32 33]]num_batches = Xs.shape[1] // num_stepsfor i in range(0, num_steps * num_batches, num_steps):X = Xs[:, i: i + num_steps]Y = Ys[:, i: i + num_steps]yield X, Y# for X, Y in seq_data_iter_sequential(my_seq, batch_size=2, num_steps=5):
#     print('X: ', X, '\nY:', Y)
"""
X:  [[ 4  5  6  7  8][19 20 21 22 23]]
Y: [[ 5  6  7  8  9][20 21 22 23 24]]
X:  [[ 9 10 11 12 13][24 25 26 27 28]]
Y: [[10 11 12 13 14][25 26 27 28 29]]
X:  [[14 15 16 17 18][29 30 31 32 33]]
Y: [[15 16 17 18 19][30 31 32 33 34]]
"""# 将上面的两个采样函数包装到一个类中, 以便稍后可以将其用作数据迭代器。
class SeqDataLoader:  #@save"""加载序列数据的迭代器"""def __init__(self, batch_size, num_steps, use_random_iter, max_tokens):if use_random_iter:self.data_iter_fn = seq_data_iter_randomelse:self.data_iter_fn = seq_data_iter_sequentialself.corpus, self.vocab = lp.load_corpus_time_machine(max_tokens)self.batch_size, self.num_steps = batch_size, num_stepsdef __iter__(self):return self.data_iter_fn(self.corpus, self.batch_size, self.num_steps)def load_data_time_machine(batch_size, num_steps,  #@saveuse_random_iter=False, max_tokens=10000):"""返回时光机器数据集的迭代器和词表"""data_iter = SeqDataLoader(batch_size, num_steps, use_random_iter, max_tokens)return data_iter, data_iter.vocab

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/40579.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

类和对象深入理解

目录 static成员概念静态成员变量面试题补充代码1代码2代码3如何访问private中的成员变量 静态成员函数静态成员函数没有this指针 特性 友元友元函数友元类 内部类特性1特性2 匿名对象拷贝对象时的一些编译器优化 感谢各位大佬对我的支持,如果我的文章对你有用,欢迎点击以下链接…

Linux-DNS

DNS域名解析服务 1.DNS介绍 DNS 是域名系统 (Domain Name System) 的缩写,是因特网的一项核心服务,它作为可以将域名和IP地址相互映射的一个分布式数据库,能够使人更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串。…

[FreeRTOS 基础知识] 互斥量 概念

文章目录 基础知识互斥量互斥量与信号量区别优先级反转优先级继承小结 基础知识 [FreeRTOS 基础知识] 信号量 概念 互斥量 互斥量(Mutex,全称:Mutual Exclusion),在计算机科学中,是一种用于防止多个进程同…

亲子时光里的打脸高手,贾乃亮与甜馨的父爱如山

贾乃亮这波操作,简直是“实力打脸”界的MVP啊! 7月5号,他一甩手,甩出张合照, 瞬间让多少猜测纷飞的小伙伴直呼:“脸疼不?”带着咱家小甜心甜馨, 回了哈尔滨老家,这趟亲…

Nginx(http配置、https配置)访问Spring Boot 项目

前文 记录一下在linux服务器下配置nginx中nginx.conf文件代理访问springboot项目 1. spring boot.yml配置 其他mysql,redis,mybatis等之类的配置就不一一列出了 # 自定义配置 为了等下验证读取的配置文件环境 appName: productserver:port: 8083 # 应用服务 WEB 访问端口s…

C语言编译和编译预处理

编译预处理 • 编译是指把高级语言编写的源程序翻译成计算机可识别的二进制程序(目标程序)的过程,它由编译程序完成。 • 编译预处理是指在编译之前所作的处理工作,它由编译预处理程序完成 在对一个源程序进行编译时,…

全国青少年软件编程等级考试-四级-奇偶之和(真题)

题目:奇偶之和 1.准备工作 (1)保留舞台中的小猫角色; 2.功能实现 (1)分别计算1~100中,奇数之和,偶数之和; (2)说出奇数之和,偶数之和。 讲解: 1、如何判断奇偶数 奇数是指除以2有…

C++deque容器

文章目录 deque容器概念deque操作deque对象的带参数构造deque头部和末尾的添加移除操作deque的数据存取deque与迭代器deque赋值deque插入deque删除 deque容器概念 deque是双端数组,而vector是单端的。 deque头部和尾部添加或移除元素都非常快速, 但是在中部安插元…

LeetCode题练习与总结:排序链表--148

一、题目描述 给你链表的头结点 head ,请将其按 升序 排列并返回 排序后的链表 。 示例 1: 输入:head [4,2,1,3] 输出:[1,2,3,4]示例 2: 输入:head [-1,5,3,4,0] 输出:[-1,0,3,4,5]示例 3&am…

封锁-封锁模式(共享锁、排他锁)、封锁协议(两阶段封锁协议)

一、引言 1、封锁技术是目前大多数商用DBMS采用的并发控制技术,封锁技术通过在数据库对象上维护锁来实现并发事务非串行调度的冲突可串行化 2、基于锁的并发控制的基本思想是: 当一个事务对需要访问的数据库对象,例如关系、元组等进行操作…

LLM - 词向量 Word2vec

1. 词向量是一个词的低维表示,词向量可以反应语言的一些规律,词意相近的词向量之间近乎于平行。 2. 词向量的实现: (1)首先使用滑动窗口来构造数据,一个滑动窗口是指在一段文本中连续出现的几个单词&#x…

整洁架构SOLID-单一职责原则(SRP)

文章目录 定义案例分析重复的假象代码合并解决方案 小结 定义 SRP是SOLID五大设计原则中最容易被误解的一个。也许是名字的原因,很多程序员根据SRP这个名字想当然地认为这个原则就是指:每个模块都应该只做一件事。 在历史上,我们曾经这样描…

# Sharding-JDBC从入门到精通(6)-- Sharding-JDBC 水平分库 和 垂直分库。

Sharding-JDBC从入门到精通&#xff08;6&#xff09;-- Sharding-JDBC 水平分库 和 垂直分库。 一、Sharding-JDBC 水平分库-分片策略配置 1、分库策略定义方式如下 # 分库策略&#xff0c;如何将一个逻辑表映射到多个数据源 spring.shardingsphere.sharding.tables.<逻…

嵌入式linux面试1

1. linux 1.1. Window系统和Linux系统的区别 linux区分大小写windows在dos&#xff08;磁盘操作系统&#xff09;界面命令下不区分大小写&#xff1b; 1.2. 文件格式区分 windows用扩展名区分文件&#xff1b;如.exe代表执行文件&#xff0c;.txt代表文本文件&#xff0c;.…

手动将dingtalk-sdk-java jar包打入maven本地仓库

有时候,中央镜像库不一定有自己需要的jar包,这时候我们就需要用到该方法,将jar打入maven本地仓库,然后项目中,正常使用maven的引入规则。 mvn install:install-file -Dmaven.repo.local=D:\software\maven\apache-maven-3.6.3-bin\apache-maven-3.6.3\repo -DgroupId=ding…

Caffeinated for Mac v2.0.6 Mac防休眠应用 兼容 M1/M2/M3

Caffeinated 可以防止您的 Mac 进入休眠状态、屏幕变暗或者启动屏幕保护。 应用介绍 您的屏幕是否总是在您不希望的时候变暗&#xff1f;那么Caffeinated就是您解决这个大麻烦的最好工具啦。Caffeinated是在Caffeine这个非常便捷、有用的工具的基础上开发而来的。Caffeinated…

215. 数组中的第K个最大元素(中等)

215. 数组中的第K个最大元素 1. 题目描述2.详细题解3.代码实现3.1 Python3.2 Java 1. 题目描述 题目中转&#xff1a;215. 数组中的第K个最大元素 2.详细题解 快速排序算法在每一轮排序中&#xff0c;随机选择一个数字 x x x&#xff0c;根据与 x x x的大小关系将要排序的数…

PMP–知识卡片--PDCA循环

记忆 PDCA&#xff1a;计划执行检查调整&#xff0c;计划观察动作&#xff1b;plan do check action 定义 PDCA循环的含义是将质量管理分为四个过程&#xff0c;即计划&#xff08;Plan&#xff09;、执行&#xff08;Do&#xff09;、检查&#xff08;Check&#xff09;、处…

使用 OpenCV 和 Python 进行车道检测和物体检测(YOLO)

本项目旨在开发一个集车道检测与物体检测功能于一体的智能视觉分析系统&#xff0c;利用先进的计算机视觉技术和深度学习模型&#xff0c;实现实时的道路场景理解和目标识别。系统主要依托OpenCV这一强大的计算机视觉库&#xff0c;以及Python作为编程语言&#xff0c;融合了车…

MySQL索引教程(01):创建索引

文章目录 MySQL 创建索引索引介绍MySQL CREATE INDEX 语法MySQL 索引类型MySQL CREATE INDEX 实例结论 MySQL 创建索引 对于一个具有大量数据行的表&#xff0c;如果你根据某个查询条件检索数据时很慢&#xff0c;可能是因为你没有在检索条件相关的列上创建索引。 索引类似于…