数据结构之算法的时间复杂度

1.时间复杂度的定义

在计算机科学中,算法的时间复杂度是一个函数,它定量描述了算法的运行时间。一个算法所花费的时间与其中语句的执行次数成正比列,算法中的基本操作的执行次数,为算法的时间复杂度

例1:

计算Func1中++count执行的次数

void Func1(int N)
{int count = 0;for(int i = 0; i < N; ++i){for(int j = 0; j < N; ++j){++count;}}for(int i = 0; i < 2 * N; ++i){++count;}int M = 10;while(M--){++count;    }printf("%d\n", count);
}

Func1的基本操作次数:F(N) = N^2 + 2 * N + 10来分析一下是为什么?

首先可以看到这段代码有三个循环

第一个是由两个for内外嵌套组成:每次循环N次,执行了N次,即N + N + N.....=N * N = N^2

第二个循环执行了 2*N

第三个循环执行了 10

如果每个时间复杂度都要这么表示的话那太复杂了,所以我们只取最大量级来表示这段代码的时间复杂度

当N  = 10时:F(N) = 130

当N = 20时:F(N) = 10210

当N = 30时:F(N) = 1002010

当我们的N取无穷大时 2 * N + 10这两个项对结果的影响已经不大了可以忽略不计,所以说只需要取N^2来表示它的时间复杂度就可以了

所以这段代码Func1的时间复杂度为: O(N ^ 2)

2.大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号

推导大O阶方法:

(1).用常数1来取代运行时间中的所有加法常数

(2).在修改后的运行次数的函数中,只保留最高阶项

(3).如果最高阶存在且不是1,则去除与这个项目相乘的常数,得到的结果就是大O阶

通过上面一个例子我们可以发现大O渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数

我们来计算几道代码的时间复杂度

例1:

void Func2(int N)
{int count = 0;for(int i = 0; i < 2 * N; i++){++count;}int M = 10;while(M--){++count; }printf("%d", count);
}

F(N) = 2 * N +10

去掉与最高阶相乘的常熟和10使用大O渐进法表示法该段代码的时间复杂度为:O(N)

例2:

void Func3(int M, int N)
{int count = 0;for(int i = 0; i < M; i++){++count;}for(int j = 0; j < N; j++){++count;}printf("%d\n", count);
}

使用大O渐进法表示法该段代码的时间复杂度为:O(N + M)

因为M和N是未知的所以不能去掉它们两个任意一个

如果N大于M,则可以去掉M,反之可以去掉N,相等可任取M和N中任何一个

例3:

void Func4(int N)
{int count = 0;for(i = 0; i < 100: i++){++count;}printf("%d\n", count);
}

F(N) = 100

执行了100次,但是我们用1来表示

使用大O渐进法表示法该段代码的时间复杂度为:O(1)  

注:这里的1表示代表1次,而是常数次

3.时间复杂度的最好,最坏和平均情况

另外有些算法的时间复杂度存在最好,平均,最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模最小运行次数(下界)

例4:

char* strchr(const char * str, int character)
{while(*Str){if(*str == character){return str;}str++;}return NULL;
}

例如:在一个长度为N的数组中找一个数据x

最好情况:1次找到

平均情况:N/2次找到

最坏情况:N次找到

在实际情况中一般关注的是算法的最坏运行情况,所以该段代码的时间复杂度为:O(N)

例5:

void BubbleSort(int *a, int n)
{assert(a);for(int end = n; end > 1; --end){for(int i = 1; i < end; i++){if(a[i - 1] > a[i]){int tmp = a[i];a[i] = a[i + 1];a[i + 1] = tmp;}}}
}

最好情况:O(N)

最坏情况将两个for循环跑满

外循环为n时,内循环循环n - 1次  然后按顺序n - 2, n-3, ....., 3, 2, 1通过判断可以知道这是一个等差数列,所以它的总和就为:n(n - 1 + 1)/2 = n^2*1/2 即最坏情况:O(N^2)

使用大O渐进法表示法去掉常数该段代码的时间复杂度为:O(N^2)  

例6:

在数组有序的情况下:可以使用二分法(折半查找)

int binarysearch(int *a,int n, int x)
{int begin = 0;int end = n - 1;while(begin <= end){int mid = begin + ((end - begin)>>1);if(a[mid] > x){end = a[mid] - 1;}else if(a[mid] < x){begin = a[mid] + 1;}else{return mid;}}return -1;
}

最好情况:O(1)

最坏情况:区间缩放到一个值,要么找到,要么找不到,假设N为数组个数,x是最坏查找次数N每次除2就等于查找一次,折半查找多少次就除多少个2

N/2/2/2..../2 = 1, 因为n为int所以最小二分到1,2^x = N 即:x = logN(log在时间复杂度中表示以2为底)所以最坏情况:O(logN)

例7:

long long fac(size_t N)
{if(N == 0)return 1;elsereturn fac(N - 1) * N;
}

使用大O渐进法表示法该段代码的时间复杂度为:O(N)

例8:

long long Fib(int n)
{if(n < 3){return 1;}else{return Fib(n - 1) + Fib(n - 2);}
}

最好情况:O(1)

可以观察到该递归的方式为等差数列我们用求和公式可以得出:2^(N-1)-1

最坏情况用大O渐进表示法:O(2^N)

总结以上时间复杂度:O(1)>O(logN)>O(N)>O(N^2)>O(N^3)>O(2*N)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/40525.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux:ollama大模型部署

目录 Ollama 是一个能在本地机器上轻松构建和运行大型语言模型的轻量级、可扩展框架&#xff0c;适用于多种场景&#xff0c;具有易于使用、资源占用少、可扩展性强等特点。 1.安装下载ollama 2.为 Ollama 创建一个用户 3.为ollama创建服务文件 4.启动ollama服务 5.拉取语…

Java 家庭物联网

家庭物联网系统的代码和说明&#xff0c;包括用户认证、设备控制、数据监控、通知和警报、日志记录以及WebSocket实时更新功能。 ### 项目结构 plaintext home-iot-system ├── backend │ └── src │ └── main │ └── java │ └…

图书馆数据仓库

目录 1.数据仓库的数据来源为业务数据库&#xff08;mysql&#xff09; 初始化脚本 init_book_result.sql 2.通过sqoop将mysql中的业务数据导入到大数据平台&#xff08;hive&#xff09; 导入mysql数据到hive中 3.通过hive进行数据计算和数据分析 形成数据报表 4.再通过sq…

【matlab】智能优化算法——求解目标函数

智能优化算法在求解目标函数方面发挥着重要作用&#xff0c;它通过迭代、筛选等方法来寻找目标函数的最优值&#xff08;极值&#xff09;。以下是关于智能优化算法求解目标函数的详细介绍&#xff1a; 一、智能优化算法概述 智能优化算法是一种搜索算法&#xff0c;旨在通过…

设置单实例Apache HTTP服务器

配置仓库 [rootlocalhost ~]# cd /etc/yum.repos.d/ [rootlocalhost yum.repos.d]# vi rpm.repo仓库代码&#xff1a; [BaseOS] nameBaseOS baseurl/mnt/BaseOS enabled1 gpgcheck0[AppStream] nameAppStream baseurl/mnt/AppStream enabled1 gpgcheck0挂载 [rootlocalhost …

2.4G无线收发芯片 XL2401D,SOP16封装,集成单片机,高性价比

XL2401D 芯片是工作在2.400~2.483GHz世界通用ISM频段&#xff0c;片内集成了九齐 NY8A054E单片机的SOC无线收发芯片。芯片集成射频收发机、频率收生器、晶体振荡器、调制解调器等功能模块&#xff0c;并且支持一对多组网和带ACK的通信模式。发射输出功率、工作频道以及通信数据…

网络基础:IS-IS协议

IS-IS&#xff08;Intermediate System to Intermediate System&#xff09;是一种链路状态路由协议&#xff0c;最初由 ISO&#xff08;International Organization for Standardization&#xff09;为 CLNS&#xff08;Connectionless Network Service&#xff09;网络设计。…

油猴脚本高级应用:拦截与修改网页Fetch请求实战指南

油猴脚本高级应用&#xff1a;拦截与修改网页Fetch请求实战指南 简介&#xff1a; 本文介绍了几个使用油猴&#xff08;Tampermonkey&#xff09;脚本拦截和修改网页 fetch 请求的案例。这些脚本可以在浏览器扩展油猴中运行&#xff0c;用于开发者调试网络请求或自定义页面行…

Vue 前端修改页面标题无需重新打包即可生效

在public文件夹下创建config.js文件 index.html页面修改 其他页面的标题都可以用window.title来引用就可以了&#xff01;

【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【19】认证服务03—分布式下Session共享问题

持续学习&持续更新中… 守破离 【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【19】分布式下Session共享问题 session原理分布式下session共享问题Session共享问题解决—session复制Session共享问题解决—客户端存储Session共享问题解决—hash一致性Session共享问题…

ASUS/华硕飞行堡垒8 FX506L FX706L系列 原厂win10系统 工厂文件 带F12 ASUS Recovery恢复

华硕工厂文件恢复系统 &#xff0c;安装结束后带隐藏分区&#xff0c;一键恢复&#xff0c;以及机器所有驱动软件。 系统版本&#xff1a;Windows10 原厂系统下载网址&#xff1a;http://www.bioxt.cn 需准备一个20G以上u盘进行恢复 请注意&#xff1a;仅支持以上型号专用…

域名、网页、HTTP概述

目录 域名 概念 域名空间结构 域名注册 网页 概念 网站 主页 域名 HTTP URL URN URI HTML 超链接 发布 HTML HTML的结构 静态网页 特点 动态网页 特点 Web HTTP HTTP方法 GET方法 POST方法 HTTP状态码 生产环境下常见的HTTP状态码 域名 概念 IP地…

基于.NET开源游戏框架MonoGame实现的开源项目合集

前言 今天分享一些基于.NET开源游戏框架MonoGame实现的开源项目合集。 MonoGame项目介绍 MonoGame是一个简单而强大的.NET框架&#xff0c;使用C#编程语言可以创建桌面PC、视频游戏机和移动设备游戏。它已成功用于创建《怒之铁拳4》、《食肉者》、《超凡蜘蛛侠》、《星露谷物…

【跟我学K8S】45天入门到熟练详细学习计划

目录 一、什么是K8S 核心功能 架构组件 使用场景 二、入门到熟练的学习计划 第一周&#xff1a;K8s基础和概念 第二周&#xff1a;核心对象和网络 第三周&#xff1a;进阶使用和管理 第四周&#xff1a;CI/CD集成和监控 第五周&#xff1a;实战模拟和案例分析 第六周…

XPointer 实例

XPointer 实例 1. 引言 XPointer 是一种用于定位 XML 文档中特定部分的语言。它是 XLink 的补充,允许用户在 XML 文档中创建链接,指向文档中的特定元素、属性或文本。XPointer 的强大之处在于其精确的定位能力,使得开发者能够创建更加丰富和动态的 XML 应用。 2. XPointe…

【Spring Boot】spring boot主启动类_内置服务

1、主启动类 1.1 定义与功能 Spring Boot的主启动类是一个特殊的Java类&#xff0c;用于启动Spring Boot应用程序。该类通常使用SpringBootApplication注解进行标注&#xff0c;这个注解是一个复合注解&#xff0c;包含SpringBootConfiguration、EnableAutoConfiguration和Co…

LRU Cache 双向链表以及STL list实现----面试常考

双向链表版本&#xff1a; #include <bits/stdc.h> using namespace std; struct Node{int key, value;Node* prev;Node* next;Node():key(0), value(0), prev(nullptr), next(nullptr){}Node(int k, int v):key(k), value(v), prev(nullptr), next(nullptr){} }; class…

【IT领域新生必看】Java中的对象创建魔法:小白也能掌握的五种方法

文章目录 引言为什么需要创建对象&#xff1f;创建对象的五种常见方式1. 使用 new 关键字示例&#xff1a; 2. 使用反射示例&#xff1a; 3. 使用克隆示例&#xff1a; 4. 使用序列化和反序列化示例&#xff1a; 5. 使用工厂方法示例&#xff1a; 选择合适的对象创建方式总结 引…

Spring容器Bean之XML配置方式

一、首先看applicationContext.xml里的配置项bean 我们采用xml配置文件的方式对bean进行声明和管理&#xff0c;每一个bean标签都代表着需要被创建的对象并通过property标签可以为该类注入其他依赖对象&#xff0c;通过这种方式Spring容器就可以成功知道我们需要创建那些bean实…

IPython代码块粘贴秘籍:效率与技巧的完美结合

标题&#xff1a;IPython代码块粘贴秘籍&#xff1a;效率与技巧的完美结合 在数据科学和Python编程的日常实践中&#xff0c;经常需要在IPython环境中快速有效地粘贴代码块。这个过程虽小&#xff0c;却对提升工作效率至关重要。本文将详细介绍如何在IPython中粘贴代码块&…