【matlab】智能优化算法——求解目标函数

智能优化算法在求解目标函数方面发挥着重要作用,它通过迭代、筛选等方法来寻找目标函数的最优值(极值)。以下是关于智能优化算法求解目标函数的详细介绍:

一、智能优化算法概述

智能优化算法是一种搜索算法,旨在通过迭代和筛选过程来找到目标函数的最优解。与神经网络算法不同,智能优化算法不直接利用目标函数的导数信息,而是基于目标函数的值来指导搜索过程。这类算法通常包含多个步骤,如初始化一组解、评估解的性能、选择解进行迭代等,直到满足停止条件为止。

二、目标函数在智能优化算法中的作用

目标函数是智能优化算法中用来评估解优劣的关键指标,它定义了问题的优化目标,即最大化或最小化的量。目标函数的选择对算法的性能和效果具有重要影响。一个好的目标函数应能够准确地反映问题的特性,并提供充分的信息用于指导算法。

三、智能优化算法求解目标函数的过程

  1. 初始化:给定一组初始解,这些解是算法搜索的起点。
  2. 评估:根据目标函数对当前这组解的性能进行评估,通常是将解代入目标函数并计算其值。
  3. 选择:从当前这组解中选择一定数量的解作为迭代后的解的基础。选择的依据可以是目标函数的值或其他启发式信息。
  4. 迭代:对选定的解进行操作(如变异、交叉等),得到新的解。然后重新评估这些新解的性能,并重复上述步骤进行迭代。
  5. 停止条件:当满足一定的条件(如达到最大迭代次数、找到满足要求的解等)时,算法停止搜索并输出最优解。

四、智能优化算法的特点

  1. 全局搜索能力:智能优化算法通常具有全局搜索能力,能够在较大的解空间中寻找最优解。
  2. 鲁棒性:这类算法对初始解的选择不敏感,能够在不同的初始条件下找到较优的解。
  3. 易于实现:智能优化算法通常具有简单的实现方式,易于编程实现和调试。

五、智能优化算法的应用实例

智能优化算法在多个领域都有广泛的应用,如机器学习、图像处理、路径规划等。以路径规划为例,智能优化算法可以用于求解旅行商问题(TSP)、车辆路径问题(VRP)等,通过寻找最优的路径来降低运输成本或提高运输效率。

六、总结

智能优化算法通过迭代和筛选过程来求解目标函数的最优解,具有全局搜索能力和鲁棒性。在实际应用中,应根据具体问题的特点选择合适的目标函数和智能优化算法,以提高求解效率和效果。

求解下列函数:

代码实现

定义目标函数:

Get_Functions_details 函数的主要目的是为给定的优化函数 F(通过其标识符字符串表示)提供相关的参数设置,包括:

  • lb(lower bound):优化变量的下界,通常是一个与问题维度 dim 相同长度的向量。
  • ub(upper bound):优化变量的上界,也是一个与 dim 相同长度的向量。
  • dim(dimension):问题的维度,即优化变量的数量。
  • fobj(function object):优化函数的句柄,指向实际计算目标函数值的函数。
function [lb,ub,dim,fobj] = Get_Functions_details(F)switch Fcase 'F1'fobj = @F1;lb=-100;ub=100;dim=30;case 'F2'fobj = @F2;lb=-10;ub=10;dim=30;case 'F3'fobj = @F3;lb=-100;ub=100;dim=30;case 'F4'fobj = @F4;lb=-1.28;ub=1.28;dim=30;case 'F5'fobj = @F5;lb=-100;ub=100;dim=30;case 'F6'fobj = @F6;lb=-10;ub=10;dim=30;end% F1function o = F1(x)
o=sum(x.^2);
end% F2function o= F2(x)
% dim=size(x,2);
for i=1:dimo=sum(i.*(x.^2));
end
end% F3
function o = F3(x)
o=sum(abs((x+.5)).^2);
end% F4function o = F4(x)
dim=size(x,2);
o=sum(1:dim.*(x.^4))+rand;
end% F5function o = F5(x)
o=-cos(x(1))*cos(x(2))*exp(-(x(1)-pi)^2-(x(2)-pi)^2);
end% F6function o = F6(x)
o=0.26*((x(1)^2)+(x(2)^2))-0.48*(x(1)*(x(2)));
endend

initialization.m 

初始化:处理所有变量具有相同边界范围的情况,也可以处理每个变量具有不同边界范围的情况。通过随机初始化,它确保了搜索算法的起点是随机且均匀的分布在问题空间内的。

% This function initialize the first population of search radiations (Agents)
function Positions=initialization(SearchAgents_no,dim,ub,lb)Boundary_no= size(ub,2); % numnber of boundaries% If the boundaries of all variables are equal and user enter a signle
% number for both ub and lb
if Boundary_no==1Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;
end% If each variable has a different lb and ub
if Boundary_no>1for i=1:dimub_i=ub(i);lb_i=lb(i);Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;end
end

main.m

clc
clear
close all
%%
Fun_name='F1'; 
SearchAgents_no=30;                     
Max_iterations=5000;                 
[lb,ub,dim,fobj]=Get_Functions_details(Fun_name); % Object function information
%%% 算法 WOA
[Best_score,Best_pos,WOA_cg_curve]=WOA(SearchAgents_no,Max_iterations,lb,ub,dim,fobj);
% 算法 PSO
[Best_score1,Best_pos1,PSO_cg_curve]=PSO(SearchAgents_no,Max_iterations,lb,ub,dim,fobj);
% 算法DBO
[Best_score2,Best_pos2,DBO_cg_curve]=DBO(SearchAgents_no,Max_iterations,lb,ub,dim,fobj);display(['The best solution obtained by WOA is  ', num2str(Best_pos)]);
display(['The best optimal value of the objective function found by WOA is  ', num2str(Best_score)]);display(['The best solution obtained by PSO is  ', num2str(Best_pos1)]);
display(['The best optimal value of the objective function found by PSO is  ', num2str(Best_score1)]);display(['The best solution obtained by DBO is  ', num2str(Best_pos2)]);
display(['The best optimal value of the objective function found by DBO is  ', num2str(Best_score2)]);CNT=40;
k=round(linspace(1,Max_iterations,CNT)); 
iter=1:1:Max_iterations;h1 = semilogy(iter(k),DBO_cg_curve(k),'m-^','linewidth',1);
hold on
h2 = semilogy(iter(k),WOA_cg_curve(k),'b-*','linewidth',1);
hold on
h3 = semilogy(iter(k),PSO_cg_curve(k),'r-o','linewidth',1);
title(Fun_name)
xlabel('Iteration');
ylabel('Best fitness so far');
legend('DBO','WOA','PSO');

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/40521.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设置单实例Apache HTTP服务器

配置仓库 [rootlocalhost ~]# cd /etc/yum.repos.d/ [rootlocalhost yum.repos.d]# vi rpm.repo仓库代码: [BaseOS] nameBaseOS baseurl/mnt/BaseOS enabled1 gpgcheck0[AppStream] nameAppStream baseurl/mnt/AppStream enabled1 gpgcheck0挂载 [rootlocalhost …

2.4G无线收发芯片 XL2401D,SOP16封装,集成单片机,高性价比

XL2401D 芯片是工作在2.400~2.483GHz世界通用ISM频段,片内集成了九齐 NY8A054E单片机的SOC无线收发芯片。芯片集成射频收发机、频率收生器、晶体振荡器、调制解调器等功能模块,并且支持一对多组网和带ACK的通信模式。发射输出功率、工作频道以及通信数据…

网络基础:IS-IS协议

IS-IS(Intermediate System to Intermediate System)是一种链路状态路由协议,最初由 ISO(International Organization for Standardization)为 CLNS(Connectionless Network Service)网络设计。…

Vue 前端修改页面标题无需重新打包即可生效

在public文件夹下创建config.js文件 index.html页面修改 其他页面的标题都可以用window.title来引用就可以了!

【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【19】认证服务03—分布式下Session共享问题

持续学习&持续更新中… 守破离 【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【19】分布式下Session共享问题 session原理分布式下session共享问题Session共享问题解决—session复制Session共享问题解决—客户端存储Session共享问题解决—hash一致性Session共享问题…

ASUS/华硕飞行堡垒8 FX506L FX706L系列 原厂win10系统 工厂文件 带F12 ASUS Recovery恢复

华硕工厂文件恢复系统 ,安装结束后带隐藏分区,一键恢复,以及机器所有驱动软件。 系统版本:Windows10 原厂系统下载网址:http://www.bioxt.cn 需准备一个20G以上u盘进行恢复 请注意:仅支持以上型号专用…

基于.NET开源游戏框架MonoGame实现的开源项目合集

前言 今天分享一些基于.NET开源游戏框架MonoGame实现的开源项目合集。 MonoGame项目介绍 MonoGame是一个简单而强大的.NET框架,使用C#编程语言可以创建桌面PC、视频游戏机和移动设备游戏。它已成功用于创建《怒之铁拳4》、《食肉者》、《超凡蜘蛛侠》、《星露谷物…

【IT领域新生必看】Java中的对象创建魔法:小白也能掌握的五种方法

文章目录 引言为什么需要创建对象?创建对象的五种常见方式1. 使用 new 关键字示例: 2. 使用反射示例: 3. 使用克隆示例: 4. 使用序列化和反序列化示例: 5. 使用工厂方法示例: 选择合适的对象创建方式总结 引…

Spring容器Bean之XML配置方式

一、首先看applicationContext.xml里的配置项bean 我们采用xml配置文件的方式对bean进行声明和管理,每一个bean标签都代表着需要被创建的对象并通过property标签可以为该类注入其他依赖对象,通过这种方式Spring容器就可以成功知道我们需要创建那些bean实…

comsol随机材料参数赋值

comsol随机材料参数赋值 在comsol中定义外部matlab函数 在comsol中定义外部matlab函数 首选项,安全性,允许 材料中,将杨氏模量更改为变量函数 计算 应力有波动,可见赋值成功 也可以看到赋值的材料参数:

植物大战僵尸杂交版V2.1+修改器+融合版

植物大战僵尸杂交版v2.1 新增新植物,全新模式与玩法! 内含窗口放大工具与修改器 主播同款游戏,下载使用即可! 链接: https://pan.baidu.com/s/1znjbqgBSdqTJWZLBOhe5hA?pwdj6ra 提取码: j6ra

vulnhub--IMF

环境 攻击机:192.168.96.4 靶机:ip未知 主机探测 确定靶机ip为32的主机 端口扫描 访问80端口 外围打点 在contact.php页面源码中找到了flag1 之后没啥突破 但查看网络后发现contact.php页面请求的三个js文件的文件名很有特点,猜测是base64编码…

模型优化调参利器贝叶斯优化bayesian-optimization实践

早在之前很多项目尤其是预测类型的项目中,就已经比较广泛地在实用贝叶斯优化库了,这是一个非常出色的纯python实现的项目,地址在这里,如下所示: 写这篇文章主要有两个目的,一方面是觉得这个工具库挺不错的值…

零基础做项目---五子棋对战---day01

创建项目 这里使用阿里云服务器 https://start.aliyun.com/ 勾选 MyBatis Framework (在SQL分类下)MySQL Driver (在SQL分类下)WebSocket (在Messaging分类下)Spring Web (在Web分类下) 项目结构 消息发送机制 按照当前已有的知识,主要是HTTP HTTP自身是难以实现这…

c++ 里如何检测内存泄露:比如用了 new ,但没有用 delete

(1 方法一) 用 MFC 框架的 F5 不带断点的调试。可以在输出窗口提示是否有内存泄露。 (2 方法二) ,在 main 函数中添加如下代码,用 F5 不带断点的调试: int main() {_CrtSetDbgFlag( _CRTDBG_A…

vue.js微商城后台管理系统

一.需要运行的效果 20240701-231456 二.代码(解析) 首先,为项目添加依赖: yarn add element-plus --save yarn vue-router4 --save 新建一个项目包,然后命名为商品管理,在components中新建几个vue文件。 …

C++新特性

C新特性主要体现在语法改进和标准库扩充两个方面。以下是一些主要的C新特性: 语法改进 统一的初始化方法:C11扩大了用大括号括起的列表(初始化列表)的使用范围,使其可用于所有的内置类型和用户自定义的类型。这种定义…

【C语言】指针(1)--入门理解

目录 一、内存和地址 二、指针变量和地址 三、指针变量类型的意义 一、内存和地址 只要讲指针就离不开内存 因为指针就是访问内存的 计算上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数 据也会放…

PY32F030高性能单片机,主频高达48M,最大64 KB 闪存,8 KB SRAM

PY32F030是普冉的一颗32位高性能MCU,采用32 位 ARM Cortex-M0 内核,高达16~64 Kbytes Flash 和 2~8 Kbytes SRAM 存储器,最高 48 MHz 工作频率。PY32F030 单片机的工作温度范围为 -40 ~ 105 C,工作电压范围为1.7 ~ 5.5 V&#xff…

多语言版在线出租车预订完整源码+用户应用程序+管理员 Laravel 面板+ 司机应用程序最新版源码

源码带PHP后台客户端源码 Flutter 是 Google 开发的一款开源移动应用开发 SDK。它用于开发 Android 和 iOS 应用,也是为 Google Fuchsia 创建应用的主要方法。Flutter 小部件整合了所有关键的平台差异,例如滚动、导航、图标和字体,可在 iOS 和…