Beyond Low-frequency Information in Graph Convolutional Networks

推荐指数: #paper/⭐⭐⭐ #paper/💡
发表于:AAAI21
简称:FAGCL

问题提出背景:

GCN常常使用低频信息,但是在现实中,不仅低频信息重要,高频信息页重要
请添加图片描述

如上图,随着类间链接的增加,低频信号的增强开始变弱,高频信号的增强开始增加.

作者贡献:
  • 不仅低频信号重要,高频信号也重要
  • 我们提出了FAGCN,不需要知道网络类型就可以自适应传播低频高频信号

模型

先验知识:

L = I n − D − 1 / 2 A D − 1 / 2 , L = I_n - D^{-1/2}AD^{-1/2}, L=InD1/2AD1/2,
在这里, λ l ∈ [ 0 , 2 ] \lambda_{l}\in[0,2] λl[0,2], L = U Λ U T L = U\Lambda U^{T} L=UΛUT, Λ = d i a g ( [ λ 1 , λ 2 , ⋯ , λ n ] ) \Lambda=diag([\lambda_1,\lambda_2,\cdots,\lambda_n]) Λ=diag([λ1,λ2,,λn])
ChebNet的卷积核: g θ = ∑ k = 0 K − 1 α k Λ k g_\theta=\sum_{k=0}^{K-1}\alpha_k\Lambda^k gθ=k=0K1αkΛk, g θ = I − Λ g_{\theta}=I-\Lambda gθ=IΛ

高频滤波器和低频滤波器

如下,我们设计了高通滤波器 F L F_{L} FL和低通滤波器 F H F_{H} FH
F L = ε I + D − 1 / 2 A D − 1 / 2 = ( ε + 1 ) I − L , F H = ε I − D − 1 / 2 A D − 1 / 2 = ( ε − 1 ) I + L \begin{align} \mathcal{F}_L=\varepsilon I+D^{-1/2}AD^{-1/2}=(\varepsilon+1)I-L,\\\mathcal{F}_H=\varepsilon I-D^{-1/2}AD^{-1/2}=(\varepsilon-1)I+L \end{align} FL=εI+D1/2AD1/2=(ε+1)IL,FH=εID1/2AD1/2=(ε1)I+L
在这里, ε \varepsilon ε是超参,范围为[0,1]
如果我们使用 F L 和 F h F_{L}和F_{h} FLFh替代卷积核f,我们可以得到如下:
F L ∗ G x = U [ ( ε + 1 ) I − Λ ] U ⊤ x = F L ⋅ x , F H ∗ G x = U [ ( ε − 1 ) I + Λ ] U ⊤ x = F H ⋅ x . \begin{align} \mathcal{F}_L*_Gx=U[(\varepsilon+1)I-\Lambda]U^\top x=\mathcal{F}_L\cdot x,\\\mathcal{F}_H*_Gx=U[(\varepsilon-1)I+\Lambda]U^\top x=\mathcal{F}_H\cdot x. \end{align} FLGx=U[(ε+1)IΛ]Ux=FLx,FHGx=U[(ε1)I+Λ]Ux=FHx.
请添加图片描述

由于一阶滤波器: g θ ( λ i ) = ε + 1 − λ i g_\theta(\lambda_i)=\varepsilon+1-\lambda_i gθ(λi)=ε+1λi(图2a)会存在负的幅度,我们为了摆脱这种情况,我们采用了图2b,图2d的二阶滤波器

低通高通分析

F L = ε I + D − 1 / 2 A D − 1 / 2 \mathcal{F}_L=\varepsilon I+D^{-1/2}AD^{-1/2} FL=εI+D1/2AD1/2
F H = ε I − D − 1 / 2 A D − 1 / 2 \mathcal{F}_H=\varepsilon I-D^{-1/2}AD^{-1/2} FH=εID1/2AD1/2如上, F L ⋅ x F_{L}\cdot x FLx表示节点和邻居特征在光谱区域的和,高频信号 F H ⋅ x F_{H}\cdot x FHx代表节点和邻居特征之间的不同
请添加图片描述

为了整合高频和低频信号,一个很自然的想法是利用注意力机制去学习高频和低频信号
h ~ i = α i j L ( F L ⋅ H ) i + α i j H ( F H ⋅ H ) i = ε h i + ∑ j ∈ N i α i j L − α i j H d i d j h j , \tilde{\mathrm{h}}_i=\alpha_{ij}^L(\mathcal{F}_L\cdot\mathbf{H})_i+\alpha_{ij}^H(\mathcal{F}_H\cdot\mathbf{H})_i=\varepsilon\mathbf{h}_i+\sum_{j\in\mathcal{N}_i}\frac{\alpha_{ij}^L-\alpha_{ij}^H}{\sqrt{d_id_j}}\mathbf{h}_j, h~i=αijL(FLH)i+αijH(FHH)i=εhi+jNididj αijLαijHhj,
为了简化,我们令:
α i j L + α i j H = 1 \alpha_{ij}^{L}+\alpha_{ij}^{H}=1 αijL+αijH=1
α i j G = α i j L − α i j H \alpha_{ij}^{G}=\alpha_{ij}^{L}-\alpha_{ij}^{H} αijG=αijLαijH

remark

理解1:当 α i j G > 0 , i . e . , α i j L > α i j H \alpha_{ij}^{G} > 0, i.e., \alpha_{ij}^{L} > \alpha_{ij}^{H} αijG>0,i.e.,αijL>αijH,这表示低频信号是主要的信号.
理解2: α i j G > 0 \alpha_{ij}^{G}>0 αijG>0表示节点和邻居特征, h i + h j \mathrm{h}_i+\mathrm{h}_j hi+hj. α i j G < 0 \alpha_{ij}^G<0 αijG<0表示节点之间的区别.
为了自适应的设置 α i j G \alpha_{ij}^G αijG,我们考虑节点和它的邻居
α i j G = tanh ⁡ ( g ⊤ [ h i ∥ h j ] ) \alpha_{ij}^G=\tanh\left(\mathrm{g}^\top\left[\mathrm{h}_i\parallel\mathrm{h}_j\right]\right) αijG=tanh(g[hihj]) g ∈ R 2 F \mathbf{g}\in\mathbb{R}^{2F} gR2F可以被视为一个共享的卷积核.tan函数限 α i j G \alpha_{ij}^G αijG在[-1,1]内.初次之外,我们仅仅考虑节点和它的一阶邻居N的相关系数
计算 α i j G \alpha_{ij}^G αijG之后,我们就可以聚合邻居的表征:
h i ′ = ε h i + ∑ j ∈ N i α i j G d i d j h j , \mathbf{h}_i^{^{\prime}}=\varepsilon\mathbf{h}_i+\sum_{j\in\mathcal{N}_i}\frac{\alpha_{ij}^G}{\sqrt{d_id_j}}\mathbf{h}_j, hi=εhi+jNididj αijGhj,

整个网络的结构

h i ( 0 ) = ϕ ( W 1 h i ) ∈ R F ′ × 1 h i ( l ) = ε h i ( 0 ) + ∑ j ∈ N i α i j G d i d j h j ( l − 1 ) ∈ R F ′ × 1 h o u t = W 2 h i ( L ) ∈ R K × 1 , \begin{aligned}&\mathbf{h}_i^{(0)}=\phi(\mathbf{W}_1\mathbf{h}_i)&&\in\mathbb{R}^{F^{\prime}\times1}\\&\mathbf{h}_i^{(l)}=\varepsilon\mathbf{h}_i^{(0)}+\sum_{j\in\mathcal{N}_i}\frac{\alpha_{ij}^G}{\sqrt{d_id_j}}\mathbf{h}_j^{(l-1)}&&\in\mathbb{R}^{F^{\prime}\times1}\\&\mathbf{h}_{out}=\mathbf{W}_2\mathbf{h}_i^{(L)}&&\in\mathbb{R}^{K\times1},\end{aligned} hi(0)=ϕ(W1hi)hi(l)=εhi(0)+jNididj αijGhj(l1)hout=W2hi(L)RF×1RF×1RK×1,
W 1 ∈ R F × F ′ , W 2 ∈ R F ′ × K \mathbf{W}_1\in\mathbb{R}^{F\times F^{\prime}},\mathbf{W}_2\in\mathbb{R}^{F^{\prime}\times K} W1RF×F,W2RF×K是权重矩阵.K代表类的个数
我们对FAGCN进行分析,当 α i j = 1 \alpha_{ij}=1 αij=1,整个网络就是GCN网络.当我们使用正则化的 α i j \alpha_{ij} αij以及softmax函数,整个网络就是一个GAT网络.但是,GCN和GAT的 α i j \alpha_{ij} αij都大于0, 更倾向于聚合低频信号.FAGCN可以更好的去聚合低频和高频信号.
除此之外,我们还可以推断出,低通过滤可以让表征更相似,低通可以让表征更加区分

可视化边相似度

请添加图片描述

如上图,我们可以得到如下结论:Cora,Citeseer,Pubmed节点所有的边都是正的权重.然而,根据6b,6c可以展示:大量的类内边是负权重,这表明当类内边和类间边区分不清时,高频信号发挥更重要的作用.而对于actor数据集,他是个异类,类间和类内边没有明显区分.

总结

写的真好.这篇提出了一个自适应系数,自适应的学习高通滤波器权重和低通滤波器权重,更好的聚合各种信息.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/39675.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智能井盖采集装置 开启井下安全新篇章

在现代城市的脉络之下&#xff0c;错综复杂的管网系统如同城市的血管&#xff0c;默默支撑着日常生活的有序进行。而管网的监测设备大多都安装在井下&#xff0c;如何给设备供电一直是一个难题&#xff0c;选用市电供电需经过多方审批&#xff0c;选用电池供电需要更换电池包&a…

MySQL表的练习

二、创建表 1、创建一个名称为db_system的数据库 create database db_system; 2、在该数据库下创建两张表&#xff0c;具体要求如下 员工表 user 字段 类型 约束 备注 id 整形 主键&#xff0c;自增长 id N…

Spring Boot项目(苍穹)

Spring Boot 框架详解 概述 Spring Boot 是一个基于 Spring 框架的工具&#xff0c;用于简化 Spring 应用程序的开发。它通过提供默认配置和快速启动机制&#xff0c;使开发者可以专注于业务逻辑&#xff0c;而不必过多关注配置和底层细节。Spring Boot 让开发变得更加简单、…

权限控制权限控制权限控制权限控制权限控制

1.权限的分类 视频学习&#xff1a;https://www.bilibili.com/video/BV15Q4y1K79c/?spm_id_from333.337.search-card.all.click&vd_source386b4f5aae076490e1ad9b863a467f37 1.1 后端权限 1. 后端如何知道该请求是哪个用户发过来的 可以根据 cookie、session、token&a…

Python pyecharts 模块

pyecharts 是一个基于 ECharts.js 的 Python 可视化库&#xff0c;用于生成各种类型的交互式图表和数据可视化。它支持多种常见的图表类型&#xff0c;如折线图、柱状图、散点图、饼图等&#xff0c;可以在 Web 页面中呈现&#xff0c;并且具有丰富的配置选项和样式定制能力。 …

qt c++ 实现服务注册、发布服务,最后被成功后回调

在Qt中实现服务注册、发布服务&#xff0c;并在服务成功发布后执行回调&#xff0c;可以通过使用Qt的QLocalServer和QLocalSocket来实现本地服务通信&#xff0c;或者使用网络服务如QTcpServer和QTcpSocket进行网络服务的发布与发现。这里我们以本地服务为例来说明。 实现本地…

WIN32核心编程 - 进程操作(一) 进程基础 - 创建进程 - 进程句柄

公开视频 -> 链接点击跳转公开课程博客首页 -> 链接点击跳转博客主页 目录 进程基础 进程的定义与概念 进程的组成 创建进程 可执行文件 CreateProces 执行流程 GetStartupInfo 进程终止 进程句柄 创建进程 打开进程 进程提权 内核模拟 回溯对象 自身进…

SD NAND时序解析

一、SD NAND时序的重要性 在SD NAND的数据传输过程中&#xff0c;时序起着至关重要的作用。正确的时序确保了数据能够准确无误地在主机和SD NAND之间传输。 二、命令与读写时序 SD NAND的通信基于命令和数据传输&#xff0c;遵循以下时序规则&#xff1a; 命令与响应交互&…

安卓常用的控件

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 在Android开发中&#xff0c;控件&#xff08;也称为视图或控件组件&#xff09;是构建用户界面的基本元素。它们…

MySQL之备份与恢复(三)

备份与恢复 逻辑备份还是物理备份 物理备份 物理备份有如下好处: 1.基于文件的物理备份&#xff0c;只需要将需要的文件复制到其他地方即可完成备份。不需要其他额外的工作来生成原始文件。2.物理备份的恢复可能就更简单了&#xff0c;这取决于存储引擎。对于MyISAM&#x…

C++_04

1、继承 1.1 基本概念 继承是面向对象编程&#xff08;OOP&#xff09;中的一个核心概念&#xff0c;特别是在C中。它允许一个类&#xff08;称为派生类或子类&#xff09;继承另一个类&#xff08;称为基类或父类&#xff09;的属性和方法。继承的主要目的是实现代码重用&…

康姿百德磁性床垫好不好,效果怎么样靠谱吗

康姿百德典雅款床垫&#xff0c;打造舒适睡眠新体验 康姿百德床垫是打造舒适睡眠新体验的首选&#xff0c;其设计能够保护脊椎健康&#xff0c;舒展脊椎&#xff0c;让您享受一夜好眠。康姿百德床垫的面料选择也非常重要&#xff0c;其细腻亲肤的针织面料给您带来柔软舒适的触…

如何在操作使用ufw设置防火墙

UFW&#xff08;简单防火墙&#xff09;是用于管理iptables防火墙规则的用户友好型前端。它的主要目标是使iptables的管理更容易。 在学习Linux的时候大家一般都会关心命令&#xff0c;Posix API和桌面等&#xff0c;很少会去了解防护墙。其实除了一些网络安全厂商提供的付费防…

交互案例:5大经典交互效果

文件格式&#xff1a;.rp&#xff08;请与班主任联系获取原型文档&#xff09; 文件名称&#xff1a;Axure交互案例&#xff1a;5大经典交互实现 文件大小&#xff1a;78.5 MB 文档内容介绍 五大经典交互包括&#xff1a; 图片手风琴 图片悬浮放大 详细说明切换 图片全屏查…

【Ubuntu noble】apt 无法安装软件 Unable to locate package vim

宿主机以及 docker 无法定位软件包 将 /etc/apt/sources.list.d/ubuntu.sources 修改为以下内容&#xff08;主要是 Suites 字段增加了noble noble-updates&#xff09; Types: deb URIs: http://archive.ubuntu.com/ubuntu/ Suites: noble noble-updates noble-backports Com…

无需启动工程造价司法鉴定的情形

第一&#xff0c;当事人在诉讼前已经对建设工程价款结算达成协议。如果当事人在诉讼前已经对建设工程价款结算已经达成协议&#xff0c;意味着工程价款的结算金额在诉讼前已经确定&#xff0c;按照上述归纳的关于工程造价司法鉴定程序的启动标准&#xff0c;则此时已无启动工程…

--7.4

7.4 Springboot 1、什么是 SpringBoot Starters 是一系列依赖关系的集合&#xff0c;因为它的存在&#xff0c;项目的依赖之间的关系对我们来说变得简单了。 2、SpringBootApplication 复合注解&#xff1a; EnableAutoConfigurationComponentScanConfiguration 3、Rest…

上位机GUI 第三弹

&#x1f60a; &#x1f60a; &#x1f60a; 从协议层面讲&#xff0c;地质单元相当重要&#xff0c;调试模式,我只能义命令发送的索引码作为,每个设备的区分方式,调试的情况&#xff0c;不在设备上设置任何东西&#xff0c;开机访问地址和端口就能用 因为懒&#xff0c;直接将…

【代码随想录】【算法训练营】【第55天】 [42]接雨水 [84]柱状图中最大的矩形

前言 思路及算法思维&#xff0c;指路 代码随想录。 题目来自 LeetCode。 day 55&#xff0c;又是一个周一&#xff0c;不能再坚持~ 题目详情 [42] 接雨水 题目描述 42 接雨水 解题思路 前提&#xff1a;雨水形成的情况是凹的, 需要前中后3个元素&#xff0c;计算该元…

分治求解最大子数组

分治求解最大子数组 分治求解步骤 分&#xff1a;将数组分成左右两部分治&#xff1a;递归地求解左半部分和右半部分的最大子数组合&#xff1a;计算跨越中点的最大子数组&#xff0c;并取三者中的最大值 具体实现 分&#xff1a; 将数组A分成两部分 左半部分&#xff1a;从…