机器学习:预测评估8类指标

机器学习:8类预测评估指标

R方值、平均值绝对误差值MAE、均方误差MSE、均方误差根EMSE、中位数绝对误差MAD、平均绝对百分误差MAPE、可解释方差分EVS、均方根对数误差MLSE。

一、R方值

1、说明:

R方值,也称为确定系数或拟合优度,是用于量化模型预测与真实数据之间拟合程度的指标。其值范围在0到1之间。

  • R方值接近0:表示模型几乎没有解释数据中的变化,即模型的预测与真实值之间几乎没有关系。
  • R方值接近1:表示模型解释了数据中的大部分变化,即模型的预测与真实值非常接近。

2、计算:

SST:是真实值与其均值之间差异的平方和,反映了数据中的总变化。

SSR:回归平方和,即回归模型可以解释的方差。它表示由自变量变化引起的因变量变化的部分,是可以用回归直线来解释的变差部分。

3、解读说明:

  • R方值过高:
    通常表示模型拟合得很好,能够解释数据中的大部分变化。但需要注意,高R方值并不一定意味着模型具有好的预测能力,特别是在存在过拟合的情况下。
  • R方值过低:
    可能表示模型拟合得不好,或者数据中的变化主要由随机噪声引起,而非模型能够解释的系统性规律。
  • R方值的比较

在比较不同模型的R方值时,需要注意数据的规模和特征。对于具有不同规模或特征的数据集,即使R方值相同,也可能表示模型具有不同的拟合能力。

二、平均绝对误差值MAE

1、说明:

预测值与实际值之差的绝对值的平均数,取值越小,模型准确度越高。

2、计算:

MAE=1𝑛∑𝑖=1𝑛|𝑦𝑖−𝑦^𝑖|

其中,n为样本个数,为真实值,为预测值。

3、解读说明:

  • 直观易懂:
    MAE是一个直观且易于理解的指标,因为它以与原始数据相同的单位来衡量误差。
  • 对异常值不敏感:
    由于MAE取的是绝对误差的平均值,因此它对数据中的异常值或极端值不敏感。这意味着即使数据中存在一些异常值,MAE值也不会受到太大的影响。
  • 评估预测精度:
    MAE直接反映了模型的预测精度,因为它衡量的是预测值与真实值之间的平均绝对差异。较小的MAE值表示模型具有更高的预测准确性。
  • 不受数据集规模影响:
    MAE是一个相对稳定的指标,它不受数据集规模的影响。因此,无论是在小数据集还是大数据集上,MAE都可以提供一致的评估结果。
    三、均值误差MSE
    1、说明:
    预测值与实际值之差的平方的平均值。取值越小,模型准确度越高。
    2、计算:
    MSE=1𝑛∑𝑖=1𝑛(𝑦𝑖−𝑦^𝑖)2
    其中,n为样本个数,为真实值,为预测值。
    3、解读说明:
  • 敏感性

MSE对预测误差的大小非常敏感,即使是较小的误差也会对MSE值产生较大的影响。因此,它能够有效反映模型的预测能力。

  • 计算简单

MSE的计算公式相对简单,易于理解和实现。

  • 对离群值敏感

MSE的一个主要缺点是它对数据中的离群值非常敏感。如果数据集中存在离群值,MSE的值可能会受到显著影响,导致对模型性能的评估不准确。

四、误差根RMSE

1、说明:

为 MSE 的平方根,取值越小,模型准确度越高。

2、计算:

RMSE=1𝑛∑𝑖=1𝑛(𝑦𝑖−𝑦^𝑖)2

其中,n为样本个数,为真实值,为预测值。

3、解释说明:

  • 敏感性

RMSE对预测误差的大小非常敏感,即使是较小的误差也会对RMSE值产生较大的影响。这有助于发现模型中的小偏差。

  • 量纲一致性

RMSE的单位与原始数据的单位相同,因此具有量纲一致性,便于理解和解释。

  • 对离群值敏感
    由于RMSE计算中涉及到平方操作,因此它对数据中的离群值非常敏感。如果数据集中存在离群值,RMSE的值可能会受到显著影响。
  • 数值范围

RMSE的取值范围是0到正无穷大。数值越小,表示模型的预测精度越高

五、数绝对误差MAD

说明

有异常值也可以使用。

[1]李文颖.基于深度学习的金融市场波动率预测研究及应用[D].东华大学,2023.DOI:10.27012/d.cnki.gdhuu.2023.000710.

六、平均绝对百分误差MAPE

1、说明:

预测值与实际值之差的绝对值与实际值之比的平均数,以百分比表示。取值越小,模型准确度越高。

2、判断标准:

MAPE取值范围是0到正无穷大。

在这个范围内,MAPE值越小,表示预测模型越准确,预测值与实际值之间的误差越小。

MAPE值小于10%:通常认为这是一个比较好的预测模型,预测精度较高。

MAPE值在10%-20%之间:预测精度仍然可以接受,但可能需要进行一些优化以提高准确性。

MAPE值大于20%:这表示预测效果不太理想,可能需要重新评估模型或寻找更好的预测方法。

七、可解释方差得分EVS

1、说明:

可解释方差得分(EVS)是衡量回归模型预测结果与实际结果之间方差相似度的一个指标。它反映了模型捕捉到的数据变异性的程度,即模型预测值的变化与实际值变化之间的相似度。

2、计算:

EVS = 1 - (ESS / TSS)

ESS:回归平方和、TSS总体平方和。

3、判断标准:

可释方差得分的取值范围为[0,1],当EVS为1时,表示模型完美预测了数据;当EVS为0时,表示模型无法解释数据方差。

在实际应用中,EVS通常用于比较不同模型的表现,取值越接近1,表示模型解释的数据方差越多,表现越好。

八、均方根对数误差MSLE

1、说明和计算:

计算的是预测值与实际值之间的对数差的平方的平均值,再取平方根。

2、判断标准:

  • 敏感性:
    MSLE对于预测值与实际值之间的比例误差非常敏感。当预测值与实际值相差很大时,即使它们的绝对值差异可能不大,MSLE也会给出一个较大的值,从而惩罚模型。
  • 对数据的分布敏感:

由于MSLE涉及到对数运算,因此它对数据的分布非常敏感。如果数据中存在大量的极端值或离群点,那么MSLE可能会给出不稳定的结果。

机器学习:预测评估8类指标

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/39245.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

多语言模型(Multilingual Models)用于推理(Inference)

在深入探讨多语言模型(Multilingual Models)用于推理(Inference)的详细内容时,我们需要首先理解多语言模型的基本概念、它们如何工作、为什么它们在现代自然语言处理(NLP)中变得如此重要&#x…

excel PivotTable 透视表

开发数据导出excel功能,设置导出透视表 数据源: 透视表: 使用插件EPPlus 数据源: IF OBJECT_ID(tempdb..#temptable) IS NOT NULLDROP TABLE #temptable; CREATE TABLE #temptable ( [PROJECT] varchar(50), [PRODUCT_CODE] var…

springboot双学位招生管理系统-计算机毕业设计源码93054

摘 要 科技进步的飞速发展引起人们日常生活的巨大变化,电子信息技术的飞速发展使得电子信息技术的各个领域的应用水平得到普及和应用。信息时代的到来已成为不可阻挡的时尚潮流,人类发展的历史正进入一个新时代。在现实运用中,应用软件的工作…

ruoyi-cloud登录接口实现滑块验证码

一、前言 ruoyi项目默认的验证码是这样的 今天来尝试增加滑块验证码,我们用到的是tianai-captcha。 文档地址:http://doc.captcha.tianai.cloud/ 源码地址:https://gitee.com/tianai/tianai-captcha 下面来看具体的步骤。 二、后端 在g…

从游戏到营销:抽卡机小程序的多维度应用探索

在数字化时代,小程序作为一种轻量级、即用即走的应用形态,正逐步渗透到人们生活的方方面面。其中,抽卡机小程序以其独特的趣味性和互动性,不仅在游戏领域大放异彩,更在营销领域展现出广阔的应用前景。本文将从游戏起源…

ELFK简介

👨‍🎓博主简介 🏅CSDN博客专家   🏅云计算领域优质创作者   🏅华为云开发者社区专家博主   🏅阿里云开发者社区专家博主 💊交流社区:运维交流社区 欢迎大家的加入&#xff01…

Hadoop-11-MapReduce JOIN 操作的Java实现 Driver Mapper Reducer具体实现逻辑 模拟SQL进行联表操作

章节内容 上一节我们完成了: MapReduce的介绍Hadoop序列化介绍Mapper编写规范Reducer编写规范Driver编写规范WordCount功能开发WordCount本地测试 背景介绍 这里是三台公网云服务器,每台 2C4G,搭建一个Hadoop的学习环境,供我学…

文件扫描pdf怎么弄?5个简易高效的文件扫描方法

在繁忙的工作中,我们常常需要将纸质文件快速转换为电子文档,以便于编辑、存储或分享。 无论是合同、报告还是笔记,将这些纸质文件转换为Word格式,不仅能提高工作效率,还能确保信息的安全备份。然而,面对市…

Redis 7.x 系列【16】持久化机制之 AOF

有道无术,术尚可求,有术无道,止于术。 本系列Redis 版本 7.2.5 源码地址:https://gitee.com/pearl-organization/study-redis-demo 文章目录 1. 概述2. 执行原理2.1 Redis 6.x2.1.1 直接写2.1.2 重写 2.2 Redis 7.x2.2.1 Redis 6…

Spring Ioc学习

第二章 Spring IOC 章节内容 Spring IOC技术实现Spring IOC设值注入Spring IOC构造注入 章节目标 掌握Spring IOC技术实现掌握Spring IOC设置注入掌握Spring IOC构造注入 第一节 Spring简介 1. Spring 简介 Spring 是目前主流的 Java 开发框架,是 Java 世界最…

基于Springboot+Vue+mysql仓库管理系统仓库进销存管理系统

博主介绍: 大家好,本人精通Java、Python、C#、C、C编程语言,同时也熟练掌握微信小程序、Php和Android等技术,能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验,能够为学生提供各类…

【Python】Python中的数据类型

数据类型 导读一、数据类型的分类1.1 Number(数字)1.1.1 静态数据类型1.1.2 动态数据类型 1.2 String(字符串)1.3 bool(布尔类型) 二、数据类型的转换2.1 隐式类型转换2.2 显式类型转换2.2.1 int(x[,base])…

系统运维面试总结(shell编程)

SYNDDOS攻击,需要判断这个访问是正常访问还是信包攻击,当前这个信包发起的访问数量是多少,例如看到30个信包同时再访问时设置监控报警。 一般选用/dev/urandom生成,但其生成的随机数带有二进制乱码,所以需要tr命令…

CASS中按指定距离和方向移动图形

1、绘制一个图形 打开软件,随意绘制一个矩形,并量取左下角点的坐标值,具体如下: 2、按距离移动原理讲解 例1:将图形沿着y轴负方向移动100米,如何实现? 如上图所示,测绘中的坐标系…

多载波调制与OFDM原理讲解以及MATLAB实现GUI设计

前言 基于MATLAB设计并实现了一个OFDM调制的图形用户界面(GUI)系统。该系统旨在简化OFDM调制过程的仿真,提供友好的用户交互界面。设计目标是通过GUI实现参数化的OFDM仿真,包括子载波数、符号数、IFFT长度、循环前缀长度、循环后…

模拟退火算法2—优缺点

模拟退火算法优点 1、以一定的概率接受恶化解 模拟退火算法(SA)在搜索策略上与传统的随机搜索方法不同,它不仅引入了适当的随机因素,而且还引入了物理系统退火过程的自然机理。这种自然机理的引入使模拟退火算法在迭代过程中不仅接受使目标函数变“好”的试探点,而且还能以一…

【单片机毕业设计选题24034】-基于STM32的手机智能充电系统

系统功能: 系统可以设置充电时长,启动充电后按设置的充电时长充电,充电时间到后自动 停止充电,中途检测到温度过高也会结束充电并开启风扇和蜂鸣器报警。 系统上电后,OLED显示“欢迎使用智能充电系统请稍后”,两秒钟…

哨兵1SAR空间数据包协议数据单元文档(五)

《哨兵1SAR空间数据包协议数据单元》文档对数据包的结构进行了详细描述,并提供了用户数据的格式和解码算法。 原文链接: 哨兵1SAR空间数据包协议数据单元文档英文版 同系列中的其他文章篇链接: 哨兵1SAR空间数据包协议数据单元文档(一) 哨兵1…

保存在FinalShell服务器登录密码忘记了,如何快速获取到

一、从FinalShell获取服务器基本信息 如图操作会导出一个json文件,可以直接保存在桌面,或者其他位置 json格式如下: {"forwarding_auto_reconnect":false ,"custom_size":false ,"delete_time":0 ,"sec…

Python数据分析-旧金山犯罪预测分析(San Francisco Crime Classification)

一、研究背景 旧金山是一个人口稠密、旅游业发达的城市,同时也是美国犯罪率较高的城市之一。随着城市的不断发展,犯罪行为的类型和频率也在不断变化,这对城市的治安管理和社会稳定构成了巨大的挑战。近年来,数据科学技术的迅猛发…