MetaGPT-DataInterpreter源码解读
MetaGPT 是一种多智能体框架,其利用SOP(Standard Operating Procedures)来协调多智能体系统。即:多智能体=智能体+环境+标准流程(SOP)+通信+经济
DataInterpreter :简单三行代码,即可完成用户requirement
任务
from metagpt.roles.di.data_interpreter import DataInterpreter
mi = DataInterpreter(use_reflection=True, tools=["<all>"])
mi.run(requirement)
machine_learning
from metagpt.roles.di.data_interpreter import DataInterpreter
DataInterpreter
mi = DataInterpreter() # 实例化方法
DataInterpreter(private_context=None,
private_config=None,
private_llm=<metagpt.provider.openai_api.OpenAILLM object at 0x7fa432f2cc40>,name='David', profile='DataInterpreter', goal='', constraints='', desc='', is_human=False, role_id='', states = ["0. <class 'metagpt.actions.di.write_analysis_code.WriteAnalysisCode'>"],
actions= [WriteAnalysisCode], rc = RoleContext(env=None, msg_buffer=MessageQueue(),memory=Memory(storage=[], index=defaultdict(<class 'list'>, {}), ignore_id=False), working_memory=Memory(storage=[], index=defaultdict(<class 'list'>, {}), ignore_id=False), state=0, todo=WriteAnalysisCode, watch={'metagpt.actions.add_requirement.UserRequirement'},news=[], react_mode='plan_and_act',max_react_loop=1), addresses={'David', 'metagpt.roles.di.data_interpreter.DataInterpreter'},planner=Planner(plan=Plan( goal='', context='', tasks=[], task_map={}, current_task_id=''),working_memory=Memory(storage=[], index=defaultdict(<class 'list'>, {}), ignore_id=False),auto_run=True),recovered=False, latest_observed_msg=None, auto_run=True, use_plan=True, use_reflection=False, execute_code=ExecuteNbCode,
tools=[],
tool_recommender=None, react_mode='plan_and_act', max_react_loop=1
)
上述展示 DataInterpreter
组成,首先补充下pydantic
基础知识点:
@model_validator(mode=“wrap”):
- 验证器方法需要接受两个参数:
cls
(类本身)和value
(要验证的值) - 可以在自定义逻辑中决定是否调用默认的
handler
方法来继续验证过程 - 允许在默认验证之前和之后执行自定义逻辑
@model_validator(mode=“after”):
- 验证器方法只需要接受一个参数:
value
(已经通过默认验证的值) - 验证器方法通常以
self
作为第一个参数,表示模型实例本身 - 这种模式下的验证器会在 Pydantic 的默认字段验证逻辑之后执行。
@model_validator(mode=“before”):
-
这种模式下的验证器会在 Pydantic 的默认字段验证逻辑之前执行
-
验证器方法通常以
cls
作为第一个参数,表示模型类本身 -
这种模式适用于类方法,因为它们在类级别上操作,可以在创建实例之前对类进行操作
-
要点1:
SerializationMixin(BaseModel, extra="forbid")
@model_validator(mode="wrap")@classmethoddef __convert_to_real_type__(cls, value: Any, handler):# ... 方法实现 ...
@model_validator(mode="wrap")
装饰器用于自定义 Pydantic 模型的验证和设置过程。- 这个类方法用于在反序列化过程中将字典转换回正确的子类实例。
- 如果输入值不是一个字典,或者不包含
__module_class_name
字段,它会使用默认的处理程序来处理值。 - 如果
__module_class_name
存在,它会查找这个名称对应的类类型,并使用这个类来实例化对象。
**不是很理解:**这段代码通过自定义序列化和反序列化过程,实现了对多态类的支持。在序列化时,它会将类类型信息添加到输出中;在反序列化时,它使用这些信息来创建正确的子类实例;
-
要点2:
DataInterpreter(Role)
class DataInterpreter(Role):name: str = "David"profile: str = "DataInterpreter"auto_run: bool = Trueuse_plan: bool = Trueuse_reflection: bool = Falseexecute_code: ExecuteNbCode = Field(default_factory=ExecuteNbCode, exclude=True)tools: list[str] = [] # Use special symbol ["<all>"] to indicate use of all registered toolstool_recommender: ToolRecommender = Nonereact_mode: Literal["plan_and_act", "react"] = "plan_and_act"max_react_loop: int = 10 # used for react mode@model_validator(mode="after")def set_plan_and_tool(self) -> "Interpreter":self._set_react_mode(react_mode=self.react_mode, max_react_loop=self.max_react_loop, auto_run=self.auto_run)self.use_plan = (self.react_mode == "plan_and_act") # create a flag for convenience, overwrite any passed-in valueif self.tools and not self.tool_recommender:self.tool_recommender = BM25ToolRecommender(tools=self.tools)self.set_actions([WriteAnalysisCode])self._set_state(0)return self
如果采用
plan_and_act
模式,引入规划器planner
self.planner = Planner(goal=self.goal, working_memory=self.rc.working_memory, auto_run=auto_run)
Planner
: 3 个字段分别是plan
、working_memory
、auto_run
class Planner(BaseModel):plan: Planworking_memory: Memory = Field(default_factory=Memory) # memory for working on each task, discarded each time a task is doneauto_run: bool = Falsedef __init__(self, goal: str = "", plan: Plan = None, **kwargs):plan = plan or Plan(goal=goal)super().__init__(plan=plan, **kwargs)
plan
字段也是个类实例,具有的字段如下:class Plan(BaseModel):goal: strcontext: str = ""tasks: list[Task] = []task_map: dict[str, Task] = {}current_task_id: str = ""
在
Role
类set_actions
中有段代码如下:for action in actions:if not isinstance(action, Action):i = action(context=self.context)else:'''pass'''self._init_action(i)
self.context
是ContextMixin
类中一个方法,返回是Context()
对象实例; -
要点3:
Action(SerializationMixin, ContextMixin, BaseModel)
class Action(SerializationMixin, ContextMixin, BaseModel):model_config = ConfigDict(arbitrary_types_allowed=True)name: str = ""i_context: Union[dict, CodingContext, CodeSummarizeContext, TestingContext, RunCodeContext, CodePlanAndChangeContext, str, None ] = ""prefix: str = "" # aask*时会加上prefix,作为system_messagedesc: str = "" # for skill managernode: ActionNode = Field(default=None, exclude=True)
**字段验证:**先执行
Action
里字段验证,mode=“before” 字段从后向前验证;@model_validator(mode="before")@classmethoddef set_name_if_empty(cls, values):if "name" not in values or not values["name"]:values["name"] = cls.__name__return values@model_validator(mode="before")@classmethoddef _init_with_instruction(cls, values):if "instruction" in values:name = values["name"]i = values.pop("instruction")values["node"] = ActionNode(key=name, expected_type=str, instruction=i, example="", schema="raw")return values
这里验证
values
值到底是什么?其实校验就是上述的self.context
**字段验证:**后执行
ContextMixin
里字段验证,mode=“after” 字段从前向后验证;@model_validator(mode="after")def validate_context_mixin_extra(self):self._process_context_mixin_extra()return selfdef _process_context_mixin_extra(self):"""Process the extra field"""kwargs = self.model_extra or {}self.set_context(kwargs.pop("context", None))self.set_config(kwargs.pop("config", None))self.set_llm(kwargs.pop("llm", None))def set(self, k, v, override=False):"""Set attribute"""if override or not self.__dict__.get(k):self.__dict__[k] = v
打印下
self.__dict__
{'private_context': Context(kwargs=AttrD...': 0.0}})), 'private_config': None, 'private_llm': None, 'name': 'WriteAnalysisCode', 'i_context': '', 'prefix': '', 'desc': '', 'node': None}
_init_action
中 追加Action
字段的private_llm
、prefix
run 方法
:
mi.run(requirement)
-
要点1:
run
函数使用异步编程并被role_raise_decorator
装饰(用于处理在异步函数执行过程中可能出现的异常);@role_raise_decorator async def run(self, with_message=None) -> Message | None:"""Observe, and think and act based on the results of the observation"""
def role_raise_decorator(func):async def wrapper(self, *args, **kwargs):try:return await func(self, *args, **kwargs)except KeyboardInterrupt as kbi:logger.error(f"KeyboardInterrupt: {kbi} occurs, start to serialize the project")if self.latest_observed_msg:self.rc.memory.delete(self.latest_observed_msg)# raise again to make it captured outsideraise Exception(format_trackback_info(limit=None))except Exception as e:if self.latest_observed_msg:logger.warning("There is a exception in role's execution, in order to resume, ""we delete the newest role communication message in the role's memory.")# remove role newest observed msg to make it observed againself.rc.memory.delete(self.latest_observed_msg)# raise again to make it captured outsideif isinstance(e, RetryError):last_error = e.last_attempt._exceptionname = any_to_str(last_error)if re.match(r"^openai\.", name) or re.match(r"^httpx\.", name):raise last_errorraise Exception(format_trackback_info(limit=None))return wrapper
这段代码的结构和各个部分的功能如下:
- 在
try
块中,调用原始的异步函数func
,并使用await
来等待其完成。 - 如果在执行
func
时捕获到KeyboardInterrupt
异常(通常由用户按Ctrl+C触发),代码将记录一个错误日志,并删除角色的最新观察消息self.latest_observed_msg
,然后重新抛出一个异常。调用的是traceback.format_exc(limit=limit)
,这是一个用于获取当前异常的堆栈跟踪信息的函数。 - 如果异常是
RetryError
,它将检查最后的错误类型,如果错误与openai
或httpx
相关,则抛出这个最后的错误。如果异常不是RetryError
或者最后的错误与openai
或httpx
无关,代码将重新抛出一个异常,并包含完整的堆栈跟踪信息。
- 在
-
要点2:
Message
解读:class Message(BaseModel):"""list[<role>: <content>]"""id: str = Field(default="", validate_default=True) # According to Section 2.2.3.1.1 of RFC 135content: strinstruct_content: Optional[BaseModel] = Field(default=None, validate_default=True)role: str = "user" # system / user / assistantcause_by: str = Field(default="", validate_default=True)sent_from: str = Field(default="", validate_default=True)send_to: set[str] = Field(default={MESSAGE_ROUTE_TO_ALL}, validate_default=True)
Message
类具有多个字段,包括id
、content
、instruct_content
、role
、cause_by
、sent_from
和send_to
, 使用 Pydantic 的功能来提供类型注解和验证。Field(default=None, validate_default=True)
: 默认值为None
,并且即使它是默认值,也会进行验证。def __init__(self, content: str = "", **data: Any):data["content"] = data.get("content", content)super().__init__(**data)
一旦基类初始化完成,Pydantic 会根据
@field_validator
装饰器指定的顺序执行校验函数。@field_validator("id", mode="before")@classmethoddef check_id(cls, id: str) -> str:return id if id else uuid.uuid4().hex@field_validator("instruct_content", mode="before")@classmethoddef check_instruct_content(cls, ic: Any) -> BaseModel: pass
在
mode="before"
的情况下,这些校验函数会在字段值被最终赋值给实例属性之前执行,这样可以确保所有的校验逻辑都在属性被设置之前完成。user: Run data analysis on sklearn Wine recognition dataset, include a plot, and train a model to predict wine class (20% as validation), and show validation accuracy. cause_by: 'metagpt.actions.add_requirement.UserRequirement' content: 'Run data analysis on sklearn Wine recognition dataset, include a plot, and train a model to predict wine class (20% as validation), and show validation accuracy.' id: '39defc4ed634430e9e87893a60557bc3' instruct_content: None role: 'user' send_to: {'<all>'} sent_from: ''
-
要点3:
RoleContext
解读:class RoleContext(BaseModel):"""Role Runtime Context"""model_config = ConfigDict(arbitrary_types_allowed=True)# # env exclude=True to avoid `RecursionError: maximum recursion depth exceeded in comparison`env: "Environment" = Field(default=None, exclude=True) # # avoid circular import# TODO judge if ser&desermsg_buffer: MessageQueue = Field(default_factory=MessageQueue, exclude=True) # Message Buffer with Asynchronous Updatesmemory: Memory = Field(default_factory=Memory)# long_term_memory: LongTermMemory = Field(default_factory=LongTermMemory)working_memory: Memory = Field(default_factory=Memory)state: int = Field(default=-1) # -1 indicates initial or termination state where todo is Nonetodo: Action = Field(default=None, exclude=True)watch: set[str] = Field(default_factory=set)news: list[Type[Message]] = Field(default=[], exclude=True) # TODO not usedreact_mode: RoleReactMode = (RoleReactMode.REACT) # see `Role._set_react_mode` for definitions of the following two attributesmax_react_loop: int = 1
-
RoleContext
类是一个用于创建具有多个属性的数据模型,包括环境、消息缓冲区、记忆、状态、待办动作、监听、新消息、回应模式和最大反应循环次数。 -
exclude=True
参数是Field
装饰器的一个选项,用于控制模型序列化时的行为。当一个字段被标记为exclude=True
时,它在默认情况下不会出现在模型的 JSON 序列化结果中。这可以用于隐藏敏感信息或不需要传输的字段。例如:rc = RoleContext() print(rc.json) # 设置 exclude 参数的字段不会被序列化
-
arbitrary_types_allowed=True
是model_config
中的一个配置选项,它允许模型中使用任意类型的对象作为属性值。设置arbitrary_types_allowed=True
,那么 Pydantic 将不会对未知类型的对象进行校验,而是直接允许它们作为模型属性的值。 -
msg_buffer
: 这是一个MessageQueue
类型的字段,用于存储消息缓冲区;class MessageQueue(BaseModel):"""Message queue which supports asynchronous updates."""model_config = ConfigDict(arbitrary_types_allowed=True)_queue: Queue = PrivateAttr(default_factory=Queue)
该类提供多种方法:
push
、pop
、pop_all
、dump
、load
、empty
方法; -
memory: Memory = Field(default_factory=Memory)
这是一个Memory
类型的字段,用于存储角色的记忆。class Memory(BaseModel):"""The most basic memory: super-memory"""storage: list[SerializeAsAny[Message]] = []index: DefaultDict[str, list[SerializeAsAny[Message]]] = Field(default_factory=lambda: defaultdict(list))ignore_id: bool = False
-
storage: list[SerializeAsAny[Message]] = []
这是一个列表类型的字段,用于存储Message
类型的实例。SerializeAsAny
可能是一个自定义的类型转换器,它允许Message
类型的实例在序列化时被转换为一个可序列化的形式。 -
index: DefaultDict[str, list[SerializeAsAny[Message]]] = Field(default_factory=lambda: defaultdict(list))
这是一个DefaultDict
类型的字段,用于存储消息的索引。DefaultDict
是一个特殊的字典,当访问一个不存在的键时,它会自动创建一个默认值。在这个例子中,默认值是一个空列表。这个索引字典的键是字符串类型,值是一个SerializeAsAny[Message]
类型的列表,用于存储与特定键相关联的消息。这个字段使用了Field
装饰器,并且使用了一个 lambda 函数作为默认工厂,这个 lambda 函数返回一个空的DefaultDict
。 -
ignore_id: bool = False
这是一个布尔类型的字段,用于表示是否忽略消息的 ID。默认值为False
,意味着消息的 ID 会被考虑在内该类提供多种方法:
add
、add_batch
、get_by_role
、get_by_content
、delete_newest
、delete
、clear
、count
、try_remember
、get
、find_news
、get_by_action
、get_by_actions
方法;
-
-
default_factory
:
使用
default_factory
可以确保每次创建模型实例时,可选字段都会被赋予一个新创建的默认实例,而不是共享同一个实例。这对于可变数据类型(如列表、字典)尤其重要;-
news: list[Type[Message]] = Field(default=[], exclude=True)
这是一个Message
类型的列表字段,用于存储角色的新消息;从消息缓冲区
msg_buffer
拿到所有未处理的消息Message
, 后放置在特定Role
的memory
里, 根据规则过滤感兴趣的消息,放在news
里;(这些消息要么是由self.rc.watch
中的某些内容导致的,要么是发送给self.name
的。此外,这些消息不能在old_messages
中找到,以避免重复处理)
-
-
要点4:
Role
解读:class Role(SerializationMixin, ContextMixin, BaseModel):"""Role/Agent"""model_config = ConfigDict(arbitrary_types_allowed=True, extra="allow")name: str = ""profile: str = ""goal: str = ""constraints: str = ""desc: str = ""is_human: bool = Falserole_id: str = ""states: list[str] = []# scenarios to set action system_prompt:# 1. `__init__` while using Role(actions=[...])# 2. add action to role while using `role.set_action(action)`# 3. set_todo while using `role.set_todo(action)`# 4. when role.system_prompt is being updated (e.g. by `role.system_prompt = "..."`)# Additional, if llm is not set, we will use role's llmactions: list[SerializeAsAny[Action]] = Field(default=[], validate_default=True)rc: RoleContext = Field(default_factory=RoleContext)addresses: set[str] = set()planner: Planner = Field(default_factory=Planner)# builtin variablesrecovered: bool = False # to tag if a recovered rolelatest_observed_msg: Optional[Message] = None # record the latest observed message when interrupted__hash__ = object.__hash__ # support Role as hashable type in `Environment.members`
实例化对字段进行后校验:
@model_validator(mode="after")def validate_role_extra(self):self._process_role_extra()return selfdef _process_role_extra(self):kwargs = self.model_extra or {}if self.is_human:self.llm = HumanProvider(None)# Check actions and set llm and prefix for each action.self._check_actions() # 'You are a DataInterpreter, named David, your goal is . 'self.llm.system_prompt = self._get_prefix()self.llm.cost_manager = self.context.cost_managerself._watch(kwargs.pop("watch", [UserRequirement]))if self.latest_observed_msg:self.recovered = True
-
要点5:
react
方法解读:该方法根据角色当前的回应模式选择执行不同的策略。如果反应模式是
RoleReactMode.REACT
或RoleReactMode.BY_ORDER
,则执行self._react()
方法;如果是RoleReactMode.PLAN_AND_ACT
,则执行self._plan_and_act()
方法。self._plan_and_act()
:直观简洁,很容易理解
async def _plan_and_act(self) -> Message:"""first plan, then execute an action sequence, i.e. _think (of a plan) -> _act -> _act -> ... Use llm to come up with the plan dynamically."""# create initial plan and update it until confirmationgoal = self.rc.memory.get()[-1].content # retreive latest user requirementawait self.planner.update_plan(goal=goal)# take on tasks until all finishedwhile self.planner.current_task:task = self.planner.current_tasklogger.info(f"ready to take on task {task}")# take on current tasktask_result = await self._act_on_task(task)# process the result, such as reviewing, confirming, plan updatingawait self.planner.process_task_result(task_result)rsp = self.planner.get_useful_memories()[0] # return the completed plan as a responseself.rc.memory.add(rsp) # add to persistent memoryreturn rsp
-
要点6:
llm
大语言模型怎么调用:-
_aask
方法:async def _aask(self, prompt: str, system_msgs: Optional[list[str]] = None) -> str:"""Append default prefix"""return await self.llm.aask(prompt, system_msgs)
实例化
self.llm
:@propertydef llm(self) -> BaseLLM:"""Role llm: if not existed, init from role.config"""if not self.private_llm:self.private_llm = self.context.llm_with_cost_manager_from_llm_config(self.config.llm)return self.private_llm
llm
如何回应:async def _achat_completion_stream(self, messages: list[dict], timeout=USE_CONFIG_TIMEOUT) -> str:response: AsyncStream[ChatCompletionChunk] = await self.aclient.chat.completions.create(**self._cons_kwargs(messages, timeout=self.get_timeout(timeout)), stream=True)
self.aclient
实例化通过self.aclient = AsyncOpenAI(**kwargs)
,kwargs
是{'api_key': 'sk-', 'base_url': 'http://10.9.xx.xx:8000/v1'}
输入信息
self._cons_kwargs(messages, timeout=self.get_timeout(timeout))
是'messages':[{'role': 'system', 'content': 'As a data scientist,... function.'}, {'role': 'user', 'content': '\n# User Requirement\n... code\n```\n'}]'max_tokens':4096 'temperature':0.0 'model':'glm4' 'timeout':600
-