1.什么是DeepLearning4j?
DeepLearning4J(DL4J)是一套基于Java语言的神经网络工具包,可以构建、定型和部署神经网络。DL4J与Hadoop和Spark集成,支持分布式CPU和GPU,为商业环境(而非研究工具目的)所设计。Skymind是DL4J的商业支持机构。 Deeplearning4j拥有先进的技术,以即插即用为目标,通过更多预设的使用,避免多余的配置,让非企业也能够进行快速的原型制作。DL4J同时可以规模化定制。DL4J遵循Apache 2.0许可协议,一切以其为基础的衍生作品均属于衍生作品的作
Deeplearning4j的功能
Deeplearning4j包括了分布式、多线程的深度学习框架,以及普通的单线程深度学习框架。定型过程以集群进行,也就是说,Deeplearning4j可以快速处理大量数据。神经网络可通过[迭代化简]平行定型,与 Java、 Scala 和 Clojure 均兼容。Deeplearning4j在开放堆栈中作为模块组件的功能,使之成为首个为微服务架构打造的深度学习框架。
Deeplearning4j的组件
深度神经网络能够实现前所未有的准确度。对神经网络的简介请参见概览页。简而言之,Deeplearning4j能够让你从各类浅层网络(其中每一层在英文中被称为layer)出发,设计深层神经网络。这一灵活性使用户可以根据所需,在分布式、生产级、能够在分布式CPU或GPU的基础上与Spark和Hadoop协同工作的框架内,整合受限玻尔兹曼机、其他自动编码器、卷积网络或递归网络。 此处为我们已经建立的各个库及其在系统整体中的所处位置:
DeepLearning4J用于设计神经网络:
- Deeplearning4j(简称DL4J)是为Java和Scala编写的首个商业级开源分布式深度学习
- DL4J与Hadoop和Spark集成,为商业环境(而非研究工具目的)所设计。
- 支持GPU和CPU
- 受到 Cloudera, Hortonwork, NVIDIA, Intel, IBM 等认证,可以在Spark, Flink, Hadoop 上运行
- 支持并行迭代算法架构
- DeepLearning4J的JavaDoc可在此处获取
- DeepLearning4J示例的Github代码库请见此处。相关示例的简介汇总请见此处。
- 开源工具 ASF 2.0许可证:github.com/deeplearning4j/deeplearning4j
2.训练模型
训练和测试数据集下载
https://raw.githubusercontent.com/zq2599/blog_download_files/master/files/mnist_png.tar.gz
MNIST简介
- MNIST是经典的计算机视觉数据集,来源是National Institute of Standards and Technology (NIST,美国国家标准与技术研究所),包含各种手写数字图片,其中训练集60,000张,测试集 10,000张,
- MNIST来源于250 个不同人的手写,其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员.,测试集(test set) 也是同样比例的手写数字数据
- MNIST官网:http://yann.lecun.com/exdb/mnist/
数据集简介
从MNIST官网下载的原始数据并非图片文件,需要按官方给出的格式说明做解析处理才能转为一张张图片,这些事情显然不是本篇的主题,因此咱们可以直接使用DL4J为我们准备好的数据集(下载地址稍后给出),该数据集中是一张张独立的图片,这些图片所在目录的名字就是该图片具体的数字
模型训练
LeNet-5简介
LeNet-5 结构:
- 输入层
图片大小为 32×32×1,其中 1 表示为黑白图像,只有一个 channel。
- 卷积层
filter 大小 5×5,filter 深度(个数)为 6,padding 为 0, 卷积步长 s=1=1,输出矩阵大小为 28×28×6,其中 6 表示 filter 的个数。
- 池化层
average pooling,filter 大小 2×2(即 f=2=2),步长 s=2=2,no padding,输出矩阵大小为 14×14×6。
- 卷积层
filter 大小 5×5,filter 个数为 16,padding 为 0, 卷积步长 s=1=1,输出矩阵大小为 10×10×16,其中 16 表示 filter 的个数。
- 池化层
average pooling,filter 大小 2×2(即 f=2=2),步长 s=2=2,no padding,输出矩阵大小为 5×5×16。注意,在该层结束,需要将 5×5×16 的矩阵flatten 成一个 400 维的向量。
- 全连接层(Fully Connected layer,FC)
neuron 数量为 120。
- 全连接层(Fully Connected layer,FC)
neuron 数量为 84。
- 全连接层,输出层
现在版本的 LeNet-5 输出层一般会采用 softmax 激活函数,在 LeNet-5 提出的论文中使用的激活函数不是 softmax,但其现在不常用。该层神经元数量为 10,代表 0~9 十个数字类别。(图 1 其实少画了一个表示全连接层的方框,而直接用 ^y^ 表示输出层。)
/******************************************************************************** Copyright (c) 2020 Konduit K.K.* Copyright (c) 2015-2019 Skymind, Inc.** This program and the accompanying materials are made available under the* terms of the Apache License, Version 2.0 which is available at* https://www.apache.org/licenses/LICENSE-2.0.** Unless required by applicable law or agreed to in writing, software* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the* License for the specific language governing permissions and limitations* under the License.** SPDX-License-Identifier: Apache-2.0******************************************************************************/package com.et.dl4j.model;import lombok.extern.slf4j.Slf4j;
import org.datavec.api.io.labels.ParentPathLabelGenerator;
import org.datavec.api.split.FileSplit;
import org.datavec.image.loader.NativeImageLoader;
import org.datavec.image.recordreader.ImageRecordReader;
import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.conf.layers.SubsamplingLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.deeplearning4j.util.ModelSerializer;
import org.nd4j.evaluation.classification.Evaluation;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.preprocessor.DataNormalization;
import org.nd4j.linalg.dataset.api.preprocessor.ImagePreProcessingScaler;
import org.nd4j.linalg.learning.config.Nesterovs;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import org.nd4j.linalg.schedule.MapSchedule;
import org.nd4j.linalg.schedule.ScheduleType;import java.io.File;
import java.util.HashMap;
import java.util.Map;
import java.util.Random;/*** Implementation of LeNet-5 for handwritten digits image classification on MNIST dataset (99% accuracy)* <a href="http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf">[LeCun et al., 1998. Gradient based learning applied to document recognition]</a>* Some minor changes are made to the architecture like using ReLU and identity activation instead of* sigmoid/tanh, max pooling instead of avg pooling and softmax output layer.* <p>* This example will download 15 Mb of data on the first run.** @author hanlon* @author agibsonccc* @author fvaleri* @author dariuszzbyrad*/
@Slf4j
public class LeNetMNISTReLu {//dataset github:https://raw.githubusercontent.com/zq2599/blog_download_files/master/files/mnist_png.tar.gz// 存放文件的地址,请酌情修改
// private static final String BASE_PATH = System.getProperty("java.io.tmpdir") + "/mnist";private static final String BASE_PATH = "/Users/liuhaihua/Downloads";public static void main(String[] args) throws Exception {// 图片像素高int height = 28;// 图片像素宽int width = 28;// 因为是黑白图像,所以颜色通道只有一个int channels = 1;// 分类结果,0-9,共十种数字int outputNum = 10;// 批大小int batchSize = 54;// 循环次数int nEpochs = 1;// 初始化伪随机数的种子int seed = 1234;// 随机数工具Random randNumGen = new Random(seed);log.info("检查数据集文件夹是否存在:{}", BASE_PATH + "/mnist_png");if (!new File(BASE_PATH + "/mnist_png").exists()) {log.info("数据集文件不存在,请下载压缩包并解压到:{}", BASE_PATH);return;}// 标签生成器,将指定文件的父目录作为标签ParentPathLabelGenerator labelMaker = new ParentPathLabelGenerator();// 归一化配置(像素值从0-255变为0-1)DataNormalization imageScaler = new ImagePreProcessingScaler();// 不论训练集还是测试集,初始化操作都是相同套路:// 1. 读取图片,数据格式为NCHW// 2. 根据批大小创建的迭代器// 3. 将归一化器作为预处理器log.info("训练集的矢量化操作...");// 初始化训练集File trainData = new File(BASE_PATH + "/mnist_png/training");FileSplit trainSplit = new FileSplit(trainData, NativeImageLoader.ALLOWED_FORMATS, randNumGen);ImageRecordReader trainRR = new ImageRecordReader(height, width, channels, labelMaker);trainRR.initialize(trainSplit);DataSetIterator trainIter = new RecordReaderDataSetIterator(trainRR, batchSize, 1, outputNum);// 拟合数据(实现类中实际上什么也没做)imageScaler.fit(trainIter);trainIter.setPreProcessor(imageScaler);log.info("测试集的矢量化操作...");// 初始化测试集,与前面的训练集操作类似File testData = new File(BASE_PATH + "/mnist_png/testing");FileSplit testSplit = new FileSplit(testData, NativeImageLoader.ALLOWED_FORMATS, randNumGen);ImageRecordReader testRR = new ImageRecordReader(height, width, channels, labelMaker);testRR.initialize(testSplit);DataSetIterator testIter = new RecordReaderDataSetIterator(testRR, batchSize, 1, outputNum);testIter.setPreProcessor(imageScaler); // same normalization for better resultslog.info("配置神经网络");// 在训练中,将学习率配置为随着迭代阶梯性下降Map<Integer, Double> learningRateSchedule = new HashMap<>();learningRateSchedule.put(0, 0.06);learningRateSchedule.put(200, 0.05);learningRateSchedule.put(600, 0.028);learningRateSchedule.put(800, 0.0060);learningRateSchedule.put(1000, 0.001);// 超参数MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(seed)// L2正则化系数.l2(0.0005)// 梯度下降的学习率设置.updater(new Nesterovs(new MapSchedule(ScheduleType.ITERATION, learningRateSchedule)))// 权重初始化.weightInit(WeightInit.XAVIER)// 准备分层.list()// 卷积层.layer(new ConvolutionLayer.Builder(5, 5).nIn(channels).stride(1, 1).nOut(20).activation(Activation.IDENTITY).build())// 下采样,即池化.layer(new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2).stride(2, 2).build())// 卷积层.layer(new ConvolutionLayer.Builder(5, 5).stride(1, 1) // nIn need not specified in later layers.nOut(50).activation(Activation.IDENTITY).build())// 下采样,即池化.layer(new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2).stride(2, 2).build())// 稠密层,即全连接.layer(new DenseLayer.Builder().activation(Activation.RELU).nOut(500).build())// 输出.layer(new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD).nOut(outputNum).activation(Activation.SOFTMAX).build()).setInputType(InputType.convolutionalFlat(height, width, channels)) // InputType.convolutional for normal image.build();MultiLayerNetwork net = new MultiLayerNetwork(conf);net.init();// 每十个迭代打印一次损失函数值net.setListeners(new ScoreIterationListener(10));log.info("神经网络共[{}]个参数", net.numParams());long startTime = System.currentTimeMillis();// 循环操作for (int i = 0; i < nEpochs; i++) {log.info("第[{}]个循环", i);net.fit(trainIter);Evaluation eval = net.evaluate(testIter);log.info(eval.stats());trainIter.reset();testIter.reset();}log.info("完成训练和测试,耗时[{}]毫秒", System.currentTimeMillis()-startTime);// 保存模型File ministModelPath = new File(BASE_PATH + "/minist-model.zip");ModelSerializer.writeModel(net, ministModelPath, true);log.info("最新的MINIST模型保存在[{}]", ministModelPath.getPath());}
}
输出模型文件和得分结果
3.编写模型预测接口
pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><parent><artifactId>springboot-demo</artifactId><groupId>com.et</groupId><version>1.0-SNAPSHOT</version></parent><modelVersion>4.0.0</modelVersion><artifactId>Deeplearning4j</artifactId><properties><maven.compiler.source>8</maven.compiler.source><maven.compiler.target>8</maven.compiler.target><dl4j-master.version>1.0.0-beta7</dl4j-master.version><nd4j.backend>nd4j-native</nd4j.backend></properties><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-autoconfigure</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.20</version></dependency><dependency><groupId>ch.qos.logback</groupId><artifactId>logback-classic</artifactId></dependency><dependency><groupId>org.deeplearning4j</groupId><artifactId>deeplearning4j-core</artifactId><version>${dl4j-master.version}</version></dependency><dependency><groupId>org.nd4j</groupId><artifactId>${nd4j.backend}</artifactId><version>${dl4j-master.version}</version></dependency><!--用于本地GPU--><!-- <dependency>--><!-- <groupId>org.deeplearning4j</groupId>--><!-- <artifactId>deeplearning4j-cuda-9.2</artifactId>--><!-- <version>${dl4j-master.version}</version>--><!-- </dependency>--><!-- <dependency>--><!-- <groupId>org.nd4j</groupId>--><!-- <artifactId>nd4j-cuda-9.2-platform</artifactId>--><!-- <version>${dl4j-master.version}</version>--><!-- </dependency>--></dependencies>
</project>
cotroller
package com.et.dl4j.controller;import com.et.dl4j.service.PredictService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.*;
import org.springframework.web.multipart.MultipartFile;import java.util.HashMap;
import java.util.Map;@RestController
public class HelloWorldController {@RequestMapping("/hello")public Map<String, Object> showHelloWorld(){Map<String, Object> map = new HashMap<>();map.put("msg", "HelloWorld");return map;}@AutowiredPredictService predictService;@PostMapping("/predict-with-black-background")public int predictWithBlackBackground(@RequestParam("file") MultipartFile file) throws Exception {// 训练模型的时候,用的数字是白字黑底,// 因此如果上传白字黑底的图片,可以直接拿去识别,而无需反色处理return predictService.predict(file, false);}@PostMapping("/predict-with-white-background")public int predictWithWhiteBackground(@RequestParam("file") MultipartFile file) throws Exception {// 训练模型的时候,用的数字是白字黑底,// 因此如果上传黑字白底的图片,就需要做反色处理,// 反色之后就是白字黑底了,可以拿去识别return predictService.predict(file, true);}
}
service
package com.et.dl4j.service;import org.springframework.web.multipart.MultipartFile;public interface PredictService {/*** 取得上传的图片,做转换后识别成数字* @param file 上传的文件* @param isNeedRevert 是否要做反色处理* @return*/int predict(MultipartFile file, boolean isNeedRevert) throws Exception ;
}
package com.et.dl4j.service.impl;
import com.et.dl4j.service.PredictService;
import com.et.dl4j.util.ImageFileUtil;
import lombok.extern.slf4j.Slf4j;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.util.ModelSerializer;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Service;
import org.springframework.web.multipart.MultipartFile;import javax.annotation.PostConstruct;
import java.io.File;@Service
@Slf4j
public class PredictServiceImpl implements PredictService {/*** -1表示识别失败*/private static final int RLT_INVALID = -1;/*** 模型文件的位置*/@Value("${predict.modelpath}")private String modelPath;/*** 处理图片文件的目录*/@Value("${predict.imagefilepath}")private String imageFilePath;/*** 神经网络*/private MultiLayerNetwork net;/*** bean实例化成功就加载模型*/@PostConstructprivate void loadModel() {log.info("load model from [{}]", modelPath);// 加载模型try {net = ModelSerializer.restoreMultiLayerNetwork(new File(modelPath));log.info("module summary\n{}", net.summary());} catch (Exception exception) {log.error("loadModel error", exception);}}@Overridepublic int predict(MultipartFile file, boolean isNeedRevert) throws Exception {log.info("start predict, file [{}], isNeedRevert [{}]", file.getOriginalFilename(), isNeedRevert);// 先存文件String rawFileName = ImageFileUtil.save(imageFilePath, file);if (null==rawFileName) {return RLT_INVALID;}// 反色处理后的文件名String revertFileName = null;// 调整大小后的文件名String resizeFileName;// 是否需要反色处理if (isNeedRevert) {// 把原始文件做反色处理,返回结果是反色处理后的新文件revertFileName = ImageFileUtil.colorRevert(imageFilePath, rawFileName);// 把反色处理后调整为28*28大小的文件resizeFileName = ImageFileUtil.resize(imageFilePath, revertFileName);} else {// 直接把原始文件调整为28*28大小的文件resizeFileName = ImageFileUtil.resize(imageFilePath, rawFileName);}// 现在已经得到了结果反色和调整大小处理过后的文件,// 那么原始文件和反色处理过的文件就可以删除了ImageFileUtil.clear(imageFilePath, rawFileName, revertFileName);// 取出该黑白图片的特征INDArray features = ImageFileUtil.getGrayImageFeatures(imageFilePath, resizeFileName);// 将特征传给模型去识别return net.predict(features)[0];}
}
application.properties
# 上传文件总的最大值
spring.servlet.multipart.max-request-size=1024MB# 单个文件的最大值
spring.servlet.multipart.max-file-size=10MB# 处理图片文件的目录
predict.imagefilepath=/Users/liuhaihua/Downloads/images/# 模型所在位置
predict.modelpath=/Users/liuhaihua/Downloads/minist-model.zip
工具类
package com.et.dl4j.util;import lombok.extern.slf4j.Slf4j;
import org.datavec.api.split.FileSplit;
import org.datavec.image.loader.NativeImageLoader;
import org.datavec.image.recordreader.ImageRecordReader;
import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.preprocessor.ImagePreProcessingScaler;
import org.springframework.web.multipart.MultipartFile;import javax.imageio.ImageIO;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.UUID;@Slf4j
public class ImageFileUtil {/*** 调整后的文件宽度*/public static final int RESIZE_WIDTH = 28;/*** 调整后的文件高度*/public static final int RESIZE_HEIGHT = 28;/*** 将上传的文件存在服务器上* @param base 要处理的文件所在的目录* @param file 要处理的文件* @return*/public static String save(String base, MultipartFile file) {// 检查是否为空if (file.isEmpty()) {log.error("invalid file");return null;}// 文件名来自原始文件String fileName = file.getOriginalFilename();// 要保存的位置File dest = new File(base + fileName);// 开始保存try {file.transferTo(dest);} catch (IOException e) {log.error("upload fail", e);return null;}return fileName;}/*** 将图片转为28*28像素* @param base 处理文件的目录* @param fileName 待调整的文件名* @return*/public static String resize(String base, String fileName) {// 新文件名是原文件名在加个随机数后缀,而且扩展名固定为pngString resizeFileName = fileName.substring(0, fileName.lastIndexOf(".")) + "-" + UUID.randomUUID() + ".png";log.info("start resize, from [{}] to [{}]", fileName, resizeFileName);try {// 读原始文件BufferedImage bufferedImage = ImageIO.read(new File(base + fileName));// 缩放后的实例Image image = bufferedImage.getScaledInstance(RESIZE_WIDTH, RESIZE_HEIGHT, Image.SCALE_SMOOTH);BufferedImage resizeBufferedImage = new BufferedImage(28, 28, BufferedImage.TYPE_INT_RGB);Graphics graphics = resizeBufferedImage.getGraphics();// 绘图graphics.drawImage(image, 0, 0, null);graphics.dispose();// 转换后的图片写文件ImageIO.write(resizeBufferedImage, "png", new File(base + resizeFileName));} catch (Exception exception) {log.info("resize error from [{}] to [{}], {}", fileName, resizeFileName, exception);resizeFileName = null;}log.info("finish resize, from [{}] to [{}]", fileName, resizeFileName);return resizeFileName;}/*** 将RGB转为int数字* @param alpha* @param red* @param green* @param blue* @return*/private static int colorToRGB(int alpha, int red, int green, int blue) {int pixel = 0;pixel += alpha;pixel = pixel << 8;pixel += red;pixel = pixel << 8;pixel += green;pixel = pixel << 8;pixel += blue;return pixel;}/*** 反色处理* @param base 处理文件的目录* @param src 用于处理的源文件* @return 反色处理后的新文件* @throws IOException*/public static String colorRevert(String base, String src) throws IOException {int color, r, g, b, pixel;// 读原始文件BufferedImage srcImage = ImageIO.read(new File(base + src));// 修改后的文件BufferedImage destImage = new BufferedImage(srcImage.getWidth(), srcImage.getHeight(), srcImage.getType());for (int i=0; i<srcImage.getWidth(); i++) {for (int j=0; j<srcImage.getHeight(); j++) {color = srcImage.getRGB(i, j);r = (color >> 16) & 0xff;g = (color >> 8) & 0xff;b = color & 0xff;pixel = colorToRGB(255, 0xff - r, 0xff - g, 0xff - b);destImage.setRGB(i, j, pixel);}}// 反射文件的名字String revertFileName = src.substring(0, src.lastIndexOf(".")) + "-revert.png";// 转换后的图片写文件ImageIO.write(destImage, "png", new File(base + revertFileName));return revertFileName;}/*** 取黑白图片的特征* @param base* @param fileName* @return* @throws Exception*/public static INDArray getGrayImageFeatures(String base, String fileName) throws Exception {log.info("start getImageFeatures [{}]", base + fileName);// 和训练模型时一样的设置ImageRecordReader imageRecordReader = new ImageRecordReader(RESIZE_HEIGHT, RESIZE_WIDTH, 1);FileSplit fileSplit = new FileSplit(new File(base + fileName),NativeImageLoader.ALLOWED_FORMATS);imageRecordReader.initialize(fileSplit);DataSetIterator dataSetIterator = new RecordReaderDataSetIterator(imageRecordReader, 1);dataSetIterator.setPreProcessor(new ImagePreProcessingScaler(0, 1));// 取特征return dataSetIterator.next().getFeatures();}/*** 批量清理文件* @param base 处理文件的目录* @param fileNames 待清理文件集合*/public static void clear(String base, String...fileNames) {for (String fileName : fileNames) {if (null==fileName) {continue;}File file = new File(base + fileName);if (file.exists()) {file.delete();}}}}
DemoApplication.java
package com.et.dl4j;import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;@SpringBootApplication
public class DemoApplication {public static void main(String[] args) {SpringApplication.run(DemoApplication.class, args);}
}
以上只是一些关键代码,所有代码请参见下面代码仓库
代码仓库
- https://github.com/Harries/springboot-demo
4.测试
启动Spring Boot应用,上传图片测试
- 如果用户输入的是黑底白字的图片,只需要将上述流程中的反色处理去掉即可
- 为白底黑字图片提供专用接口predict-with-white-background
- 为黑底白字图片提供专用接口predict-with-black-background
5.引用
- 关于我们 - Deeplearning4j: Open-source, Distributed Deep Learning for the JVM
- DL4J实战之三:经典卷积实例(LeNet-5)_multilayerconfiguration 参数-CSDN博客
- Spring Boot集成DeepLearning4j实现图片数字识别 | Harries Blog™