C++:std::function的libc++实现

std::function是个有点神奇的模板,无论是普通函数、函数对象、lambda表达式还是std::bind的返回值(以上统称为可调用对象(Callable)),无论可调用对象的实际类型是什么,无论是有状态的还是无状态的,只要它们有相同参数类型和返回值类型,就可以使用同一类型的std::function进行存储和调用。这种特性被称作类型擦除(Type erasure),它允许我们在不知道对象实际类型的情况下对对象进行存储和操作。

在本文中,我将以std::functionlibc++实现(14.0版本)为例,分析std::function类型擦除的实现原理,以及实现一个精简版的std::functionMyFunction

std::function如何实现类型擦除?

在不知道对象实际类型的情况下操作对象,有一种常规的手段可以实现这个功能,那就是多态,libc++版的std::function正是基于虚函数实现的。具体是如何实现的呢?我们可以从考察std::function在被调用时发生了什么作为这个问题的切入点。

对于以下代码:

#include <functional>
#include <iostream>
int main() {std::function<void()> f = []() {  //std::cout << "Hello, world!" << std::endl;};f();return 0;
}

std::cout一行打断点,运行,得到以下堆栈:

#0  main::$_0::operator() (this=0x7fffffffdb18) at /mnt/d/code/function_test/call.cpp:6
#1  0x0000555555557745 in std::__1::__invoke<main::$_0&> (__f=...) at /usr/lib/llvm-14/bin/../include/c++/v1/type_traits:3640
#2  0x00005555555576fd in std::__1::__invoke_void_return_wrapper<void, true>::__call<main::$_0&> (__args=...) at /usr/lib/llvm-14/bin/../include/c++/v1/__functional/invoke.h:61
#3  0x00005555555576cd in std::__1::__function::__alloc_func<main::$_0, std::__1::allocator<main::$_0>, void ()>::operator()() (this=0x7fffffffdb18) at /usr/lib/llvm-14/bin/../include/c++/v1/__functional/function.h:180
#4  0x0000555555556839 in std::__1::__function::__func<main::$_0, std::__1::allocator<main::$_0>, void ()>::operator()() (this=0x7fffffffdb10) at /usr/lib/llvm-14/bin/../include/c++/v1/__functional/function.h:354
#5  0x0000555555558622 in std::__1::__function::__value_func<void ()>::operator()() const (this=0x7fffffffdb10) at /usr/lib/llvm-14/bin/../include/c++/v1/__functional/function.h:507
#6  0x00005555555577d5 in std::__1::function<void ()>::operator()() const (this=0x7fffffffdb10) at /usr/lib/llvm-14/bin/../include/c++/v1/__functional/function.h:1184
#7  0x00005555555562e5 in main () at /mnt/d/code/function_test/call.cpp:8

不考虑lambda本身,以及invoke相关的类,std::function实现相关的类有以下几个:

  1. std::__1::function<void ()>
  2. std::__1::__function::__value_func<void ()>
  3. std::__1::__function::__func<main::$_0, std::__1::allocator<main::$_0>, void ()>
  4. std::__1::__function::__alloc_func<main::$_0, std::__1::allocator<main::$_0>, void ()>

lambda的类型被定义为了main::$_0,可以看出来,function__function::__value_func两个模板类不依赖lambda实际类型,__function::__func__function::__alloc_func对lambda类型有依赖。

std::function

std::function看起,被声明为拥有一个模板参数_Fp。我们使用的是它的特化版本,具有两个模板参数,返回值类型_Rp和参数列表类型_ArgTypes(接下来几个类也都是特化出来的,不再赘述)。它有一个__function::__value_func<_Rp(_ArgTypes...)>类型的成员__f_

template<class _Fp> class function;template<class _Rp, class ..._ArgTypes>
class function<_Rp(_ArgTypes...)>
{typedef __function::__value_func<_Rp(_ArgTypes...)> __func;__func __f_;...
};
...
template <class _Rp, class... _ArgTypes>
template <class _Fp, class>
function<_Rp(_ArgTypes...)>::function(_Fp __f) : __f_(_VSTD::move(__f)) {}

std::functionoperator()被调用时,它只是地把调用转发给__f_

template<class _Rp, class ..._ArgTypes>
_Rp
function<_Rp(_ArgTypes...)>::operator()(_ArgTypes... __arg) const
{return __f_(_VSTD::forward<_ArgTypes>(__arg)...);
}

__function::__value_func

看看__function::__value_func具体是什么类型:

// __value_func creates a value-type from a __func.
template <class _Fp> class __value_func;template <class _Rp, class... _ArgTypes> class __value_func<_Rp(_ArgTypes...)>
{typename aligned_storage<3 * sizeof(void*)>::type __buf_;typedef __base<_Rp(_ArgTypes...)> __func;__func* __f_;...
};

它的模板参数和std::function一致,有两个成员,一个成员是有3个指针大小的__buf_,另一个成员是__function::__base<_Rp(_ArgTypes...)>*类型的__f_

__function::__value_func的构造函数相对复杂一些,主要是为了做一个优化:当__f_指向的对象的大小小于等于__buf_的大小,也就是3个指针时,__f_会被构造在__buf_上,这样可以减少堆上内存的分配:

template <class _Fp, class _Alloc>
__value_func(_Fp&& __f, const _Alloc& __a): __f_(nullptr)
{typedef allocator_traits<_Alloc> __alloc_traits;typedef __function::__func<_Fp, _Alloc, _Rp(_ArgTypes...)> _Fun;typedef typename __rebind_alloc_helper<__alloc_traits, _Fun>::type_FunAlloc;if (__function::__not_null(__f)){_FunAlloc __af(__a);if (sizeof(_Fun) <= sizeof(__buf_) &&is_nothrow_copy_constructible<_Fp>::value &&is_nothrow_copy_constructible<_FunAlloc>::value){__f_ =::new ((void*)&__buf_) _Fun(_VSTD::move(__f), _Alloc(__af));}else{typedef __allocator_destructor<_FunAlloc> _Dp;unique_ptr<__func, _Dp> __hold(__af.allocate(1), _Dp(__af, 1));::new ((void*)__hold.get()) _Fun(_VSTD::move(__f), _Alloc(__a));__f_ = __hold.release();}}
}

需要注意到的一个细节是:__f_在模板类定义中的类型是__function::__base,而此处new出来的对象类型是__function::__func,不难猜到,__function::__func继承了__function::__base

__function::__value_funcoperator()被调用时,它也只是在做完合法性检查后把调用转发给了*__f_

_Rp operator()(_ArgTypes&&... __args) const
{if (__f_ == nullptr)__throw_bad_function_call();return (*__f_)(_VSTD::forward<_ArgTypes>(__args)...);
}

__function::__base

下面是__function::__base,它是一个抽象模板类,模板参数和std::function一致,不包含可调用对象的具体类型:

template<class _Fp> class __base;template<class _Rp, class ..._ArgTypes>
class __base<_Rp(_ArgTypes...)>
{__base(const __base&);__base& operator=(const __base&);
public:_LIBCPP_INLINE_VISIBILITY __base() {}_LIBCPP_INLINE_VISIBILITY virtual ~__base() {}virtual __base* __clone() const = 0;virtual void __clone(__base*) const = 0;virtual void destroy() _NOEXCEPT = 0;virtual void destroy_deallocate() _NOEXCEPT = 0;virtual _Rp operator()(_ArgTypes&& ...) = 0;
#ifndef _LIBCPP_NO_RTTIvirtual const void* target(const type_info&) const _NOEXCEPT = 0;virtual const std::type_info& target_type() const _NOEXCEPT = 0;
#endif // _LIBCPP_NO_RTTI
};

__function::__func

然后是__function::__func,它继承了__function::__base,并且其模板参数含有可调用对象的类型_Fp,这正是实现类型擦除的关键:类型_Fp被隐藏了在了__function::__base这个抽象类后面。__function::__func含有一个类型为__function::__alloc_func的成员__f_

// __func implements __base for a given functor type.
template<class _FD, class _Alloc, class _FB> class __func;template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
class __func<_Fp, _Alloc, _Rp(_ArgTypes...)>: public  __base<_Rp(_ArgTypes...)>
{__alloc_func<_Fp, _Alloc, _Rp(_ArgTypes...)> __f_;
public:explicit __func(_Fp&& __f): __f_(_VSTD::move(__f)) {}...
};

__function::__funcoperator()依然只是转发调用:

template<class _Fp, class _Alloc, class _Rp, class ..._ArgTypes>
_Rp
__func<_Fp, _Alloc, _Rp(_ArgTypes...)>::operator()(_ArgTypes&& ... __arg)
{return __f_(_VSTD::forward<_ArgTypes>(__arg)...);
}

__function::__alloc_func

然后是最后一个类__function::__alloc_func,它有一个pair类型的成员__f_std::function构造时传入的可调用对象最终会存储在__f_中:

// __alloc_func holds a functor and an allocator.
template <class _Fp, class _Ap, class _FB> class __alloc_func;template <class _Fp, class _Ap, class _Rp, class... _ArgTypes>
class __alloc_func<_Fp, _Ap, _Rp(_ArgTypes...)>
{__compressed_pair<_Fp, _Ap> __f_;public:...explicit __alloc_func(_Target&& __f): __f_(piecewise_construct, _VSTD::forward_as_tuple(_VSTD::move(__f)),_VSTD::forward_as_tuple()){}...
};

__function::__alloc_funcoperator()方法中,调用转发给了__invoke_void_return_wrapper::__call,后面的流程就和std::function的实现无关了。

_Rp operator()(_ArgTypes&&... __arg)
{typedef __invoke_void_return_wrapper<_Rp> _Invoker;return _Invoker::__call(__f_.first(),_VSTD::forward<_ArgTypes>(__arg)...);
}

最终我们发现,“神奇”的类型擦除还是通过“朴素”的多态来实现的,之所以显得神奇是因为多态被隐藏了起来,没有暴露给用户。

std::function对构造参数的校验

仔细观察一下std::function的构造函数:

template <class _Rp, class... _ArgTypes>
template <class _Fp, class>
function<_Rp(_ArgTypes...)>::function(_Fp __f) : __f_(_VSTD::move(__f)) {}

构造函数对参数__f似乎并没有施加任何约束,如何真是那样,那我们在使用一个不恰当的_Fp类型构造std::function时,很可能会得到可读性极差的编译错误信息,因为std::function类本身对_Fp没有施加约束,那么实例化std::function时也就不太可能出现错误了,很有可能到了实例化__function::__alloc_func时编译错误才会报告出来,这是一个内部类,一般用户看到了关于它的实例化失败的错误信息大概会感到摸不着头脑。

但实际情况并不是这样的,假设你这样定义一个std::function对象:

std::function<void()> f(1);

你会得到一个比较清晰的编译错误信息:

/mnt/d/code/function_test/myfunction.cpp:107:27: error: no matching constructor for initialization of 'std::function<void ()>'std::function<void()> f(1);
...
/usr/lib/llvm-14/bin/../include/c++/v1/__functional/function.h:998:5: note: candidate template ignored: requirement '__callable<int &, false>::value' was not satisfied [with _Fp = int]function(_Fp);
...

这是怎么做到的呢?答案藏在构造函数声明的第二个模板参数class = _EnableIfLValueCallable<_Fp>

template<class _Fp, class = _EnableIfLValueCallable<_Fp>>
function(_Fp);

此处使用了SFINAE技术,我们看看_EnableIfLValueCallable具体是怎么实现的:

template <class _Fp, bool = _And<_IsNotSame<__uncvref_t<_Fp>, function>,__invokable<_Fp, _ArgTypes...>
>::value>
struct __callable;
template <class _Fp>struct __callable<_Fp, true>{static const bool value = is_void<_Rp>::value ||__is_core_convertible<typename __invoke_of<_Fp, _ArgTypes...>::type,_Rp>::value;};
template <class _Fp>struct __callable<_Fp, false>{static const bool value = false;};template <class _Fp>
using _EnableIfLValueCallable = typename enable_if<__callable<_Fp&>::value>::type;

_EnableIfLValueCallable的实现依赖于__callable__callable是一个模板类,拥有两个模板参数,第一个模板参数_Fp是可调用对象的类型,第二个模板参数是bool类型的,当_IsNotSame<__uncvref_t<_Fp>, function>__invokable<_Fp, _ArgTypes...>这两个条件同时满足时,该模板参数为true,否则为false。

_IsNotSame<__uncvref_t<_Fp>, function>,顾名思义,是用来判断两个模板参数是否为同一类型的,这个条件似乎是为了避免歧义:当我们用另一个std::function构造std::function时,应该匹配到拷贝构造函数,而不是这个。

__invokable<_Fp, _ArgTypes...>则是用来判断_Fp是否接受传入_ArgTypes参数调用。

__callable第二个模板参数为false的特化中,将value直接定义为false。而模板参数为true的特化中,还添加了新的判断条件,用来校验可调用对象返回值的可转换性。

第一个条件为is_void<_Rp>::value,用来判断_Rpvoid类型。这意味着,即使可调用对象实际上有返回类型,但是std::function被定义为返回void,那么编译也是可以通过的。

第二个条件是__is_core_convertible<typename __invoke_of<_Fp, _ArgTypes...>::type, _Rp>::value,用来判断_Fp被调用后返回值可转换为_Rp

综上,_Fp要满足以下条件,std::function的构造函数才能正常实例化:

_Fp不是std::function && _Fp可以以_ArgTypes为参数调用 && (_Rpvoid || _Fp返回值类型可转换为_Rp)

这保证了当以不恰当的可调用对象构造std::function时,能够尽可能提前触发编译错误,提升编译错误信息的可读性。

MyFunction的实现

下面我们下面模仿libc++,实现一个“青春版”的std::functionMyFunction,它忽略掉了大部分细节,只实现了构造和调用部分的代码。

#include <functional>
#include <iostream>
#include <utility>template <typename Func>
class FunctionBase;template <typename Ret, typename... Args>
class FunctionBase<Ret(Args...)> {public:virtual Ret operator()(Args&&... args) = 0;
};template <typename Callable, typename Func>
class FunctionImpl;template <typename Callable, typename Ret, typename... Args>
class FunctionImpl<Callable, Ret(Args...)> : public FunctionBase<Ret(Args...)> {Callable c_;public:FunctionImpl(Callable&& c) : c_(std::move(c)) {}Ret operator()(Args&&... args) override {return std::invoke(c_, std::forward<Args>(args)...);}
};template <typename Func>
class MyFunction;template <typename Ret, typename... Args>
class MyFunction<Ret(Args...)> {FunctionBase<Ret(Args...)>* f_ = nullptr;public:template <typename Callable>MyFunction(Callable c) {f_ = new FunctionImpl<Callable, Ret(Args...)>(std::move(c));}Ret operator()(Args&&... args) {if (f_ == nullptr) {throw std::bad_function_call();}return (*f_)(std::forward<Args>(args)...);}
};void normalFunction() { std::cout << "I'm a normal function" << std::endl; }struct FunctionObject {void operator()() { std::cout << "I'm a function object" << std::endl; }
};int main() {MyFunction<void()> f0 = []() { std::cout << "I'm a lambda" << std::endl; };f0();MyFunction<void()> f1 = normalFunction;f1();MyFunction<void()> f2 = FunctionObject();f2();return 0;
}

结语

在没有std::function可用的年代或者场合,我们一般会选择使用函数指针来实现类似std::function的功能。在使用C实现的Linux内核代码中,我们仍可以看到大量的函数指针的存在,主要是用来实现回调函数。

相较函数指针,std::function最明显的优势在于可以方便地存储带状态的函数,而函数指针只能以比较丑陋的方式来实现这个特性。

其次是灵活性,std::function给客户代码施加的约束较小,我们可以使用任意形式的可调用对象:普通函数,lambda表达式,函数对象等,函数指针就没有这种灵活性了。

不过由于虚函数的存在,std::function多了一点性能开销,但这点开销对大多数常规应用来说都是微不足道的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/37269.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】string基本用法(常用接口介绍)

文章目录 一、string介绍二、string类对象的创建&#xff08;常见构造&#xff09;三、string类对象的容量操作1.size()和length()2.capacity()3.empty()4.clear()5.reserve()6.resize() 四、string类对象的遍历与访问1.operator[ ]2.正向迭代器begin()和end()3.反向迭代器rbeg…

QTableView与QSqlQueryModel的简单使用

测试&#xff1a; 这里有一个sqlite数据库 存储了10万多条数据&#xff0c;col1是1,col2是2. 使用QSqlQueryModel和QTableView来显示这些数据&#xff0c;也非常非常流畅。 QString aFile QString::fromLocal8Bit("E:/桌面/3.db");if (aFile.isEmpty())return;//打…

计算机图形学笔记----矩阵

矩阵和标量的运算 ,则 矩阵与矩阵相乘 的矩阵A&#xff0c;的矩阵B。两矩阵&#xff0c;结果为的矩阵&#xff0c;第一个矩阵的列数必须和第二个矩阵的行数相同&#xff0c;否则不能相乘 &#xff0c;中的每个元素等于A的第i行所对应的矢量和B的第j列所对应的矢量进行矢量点…

云计算【第一阶段(22)】Linux的进程和计划任务管理

目录 一、查看进程 1.1、程序和进程的关系 1.2、查看进程 1.2.1、静态查看进程信息ps ​编辑 1.2.1.1、实验 1.2.2、动态查看进程信息top 1.2.2.1、实验 1.2.2.2、top 命令全屏操作界面快捷键 1.2.3、pgrep根据特定条件查询进程pid信息 1.2.4、pstree命令以树形结构列出…

Avue框架学习

Avue框架学习 我们的项目使用的框架是 Avue 在我看来这个框架最大的特点是可以基于JSON配置页面上的From,Table以及各种各样的输入框等,不需要懂前端就可以很快上手,前提是需要多查一下文档 开发环境搭建 由于我本地的环境全是用docker来搭建的,所以我依然选择用docker搭建我…

万字浅析视频搜索系统中的多模态能力建设

万字浅析视频搜索系统中的多模态能力建设 FesianXu 20240331 at Tencent WeChat search team 前言 视频搜索是天然的富媒体检索场景&#xff0c;视觉信息占据了视频的一大部分信息量&#xff0c;在视频搜索系统中引入多模态能力&#xff0c;对于提高整个系统的能力天花板至关重…

机器人控制系列教程之任务空间运动控制器搭建(1)

任务空间运动控制简介 任务空间运动控制—位置被指定给控制器作为末端执行器的姿态。然后&#xff0c;控制器驱动机器人的关节配置到使末端执行器移动到指定姿态的值。这有时被称为操作空间控制。 任务空间运动模型表示机器人在闭环任务空间位置控制下的运动&#xff0c;可使用…

汽车电子工程师入门系列——AUTOSAR通信服务框架(下)

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…

python格式文件

python小白考后复习 CSV格式文件ini格式文件我们可以读取所有节点还可以输出一个节点下所有键值对组成的元组获取节点下的键对应的值判断节点是否存在添加节点还可以添加键值还可以删除节点 XML格式文件读取若是文件格式存在的xml若是以字符串形式存在的xml获取子标签还有获取子…

【分布式计算框架 MapReduce】高级编程—搜索日志数据分析

目录 一、对于 sogou_500w_utf 数据&#xff0c;使用 MapReduce 编程模型完成对以下数据的分析任务 1. 统计 2011-12-30 日搜索记录&#xff0c;每个时间段的搜索次数 &#xff08;1&#xff09;运行截图 &#xff08;2&#xff09; 源代码 2. 统计 2011-12-30 日 3 点至 …

2024最新初级会计职称题库来啦!!!

16.根据增值税法律制度的规定&#xff0c;下列各项中&#xff0c;属于"提供加工、修理修配劳务"的是&#xff08;&#xff09;。 A.修理小汽车 B.修缮办公楼 C.爆破 D.矿山穿孔 答案&#xff1a;A 解析&#xff1a;选项AB&#xff1a;修理有形动产&#xff08;…

【PL理论深化】(13) 变量与环境:文法结构 | 真假表达式:isZero E | let 表达式叠放 | 定义的规则 | 条件语句的使用

&#x1f4ac; 写在前面&#xff1a;从现在开始&#xff0c;让我们正式设计和实现编程语言。首先&#xff0c;让我们扩展在之前定义的整数表达式语言&#xff0c;以便可以使用变量和条件表达式。 目录 0x00 文法结构 0x01 真假表达式&#xff1a;isZero E 0x02 let 表达式叠…

Elasticsearch 第四期:搜索和过滤

序 2024年4月&#xff0c;小组计算建设标签平台&#xff0c;使用ES等工具建了一个demo&#xff0c;由于领导变动关系&#xff0c;项目基本夭折。其实这两年也陆陆续续接触和使用过ES&#xff0c;两年前也看过ES的官网&#xff0c;当时刚毕业半年多&#xff0c;由于历史局限性导…

ArtTS系统能力-通知的学习(3.1)

上篇回顾&#xff1a; ArtTS语言基础类库-容器类库内容的学习(2.10.2&#xff09; 本篇内容&#xff1a; ArtTS系统能力-通知的学习&#xff08;3.1&#xff09; 一、 知识储备 1. 基础类型通知 按内容分成四类&#xff1a; 类型描述NOTIFICATION_CONTENT_BASIC_TEXT普通文…

2024 Parallels Desktop for Mac 功能介绍

Parallels Desktop的简介 Parallels Desktop是一款由Parallels公司开发的桌面虚拟化软件&#xff0c;它允许用户在Mac上运行Windows和其他操作系统。通过强大的技术支持&#xff0c;用户无需重新启动电脑即可在Mac上运行Windows应用程序&#xff0c;实现了真正的无缝切换。 二…

普元EOS学习笔记-创建精简应用

前言 本文依旧基于EOS8.3进行描述。 在上一篇文章《EOS8.3精简版安装》中&#xff0c;我们了解到普元预编译好的EOS的精简版压缩包&#xff0c;安装后&#xff0c;只能进行低开&#xff0c;而无法高开。 EOS精简版的高开方式是使用EOS开发工具提供的IDE&#xff0c;创建一个…

东软睿驰总裁兼CTO杜强受邀出席 CICV 2024智能网联汽车技术首脑(CTO)闭门峰会

近日&#xff0c;第十一届国际智能网联汽车技术年会&#xff08;CICV 2024&#xff09;在北京举办&#xff0c;会议期间组织智能网联汽车技术首脑&#xff08;CTO&#xff09;闭门峰会&#xff0c;邀请40余位技术领袖围绕智能网联汽车产业生态建设以及智能网联汽车数据、算力和…

Python的numpy简单使用

1.可以调用引入numpy里面的函数&#xff0c;如add可以把俩数相加&#xff0c;也可以创建一个数组arr&#xff0c;arr.shape是数组arr的属性&#xff0c;如果后有跟&#xff08;&#xff09;就是里面的一个函数 type()函数可以知道里面是什么类型 变量.shape可以知道这个变量是…

基于决策树的旋转机械故障诊断(Python)

前置文章&#xff1a; 将一维机械振动信号构造为训练集和测试集&#xff08;Python&#xff09; https://mp.weixin.qq.com/s/DTKjBo6_WAQ7bUPZEdB1TA 旋转机械振动信号特征提取&#xff08;Python&#xff09; https://mp.weixin.qq.com/s/VwvzTzE-pacxqb9rs8hEVw import…

菲尔兹奖得主测试GPT-4o,经典过河难题未能破解!最强Claude 3.5回答离谱!

目录 01 大言模型能否解决「狼-山羊-卷心菜」经典过河难题&#xff1f; 02 加大难度&#xff1a;100只鸡、1000只鸡如何&#xff1f; 01 大言模型能否解决「狼-山羊-卷心菜」经典过河难题&#xff1f; 最近&#xff0c;菲尔兹奖得主Timothy Gowers分享了他测试GPT-4o的经历&a…