【旭日x3派】部署官方yolov5全流程

地平线旭日x3派部署yolov5--全流程

    • 前言
    • 一、深度学习环境安装
    • 二、安装docker
    • 三、部署
      • 3.1、安装工具链镜像
      • 3.2、配置天工开物OpenExplorer工具包
      • 3.3、创建深度学习虚拟空间,安装依赖:
      • 3.4、下载yolov5项目源码并运行
      • 3.5、pytorch的pt模型文件转onnx
      • 3.6、最重要且最难的部分:ONNX模型转换成bin模型
    • 四、上板运行

前言

原文参考:https://blog.csdn.net/Zhaoxi_Li/article/details/125516265
https://blog.csdn.net/Zhaoxi_Li/article/details/126651890?spm=1001.2014.3001.5502

这次部署的过程在windows下进行,深度学习环境和docker都是安装在windows中。
系统:win10
gpu:NVIDIA GeForce GTX 1650
在这里插入图片描述
简单来说就是一块性能拉跨点的笔记本电脑,可以直接插入鼠标、键盘、显示屏,当作电脑使用。这使得可以部署深度学习算法到这块板子上。

一、深度学习环境安装

如果只是想体验一下部署,不使用自己的模型的话,其实深度学习的环境都不用安装。
1、安装anaconda
anaconda的介绍看这篇:https://blog.csdn.net/weixin_56197703/article/details/124630222
下载一般两个选择,一个是官网,另一个是国内镜像网站。
①官网下载:直接下载最新就好了
在这里插入图片描述
②镜像网站下载:可以下载下面圈起来的其中之一
在这里插入图片描述

安装过程: 建议直接安装c盘,避免不必要的错误,前提是c盘名称是英文。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
下面这里,第一个选项意思就是将安装路径填入到系统环境变量中,这里勾选,后面使用着可能会出现问题,如果这里不勾选的话,就要自己区设置环境变量。
在这里插入图片描述
如果前面这个没勾选的话就进行环境变量设置:
此电脑----->属性----->高级系统设置----->环境变量----->path----->编辑----->新建。
在这里插入图片描述
将如下指令添加到环境变量:这里要根据自己的安装位置进行更改。

E:\Anaconda 
E:\Anaconda\Scripts 
E:\Anaconda\Library\mingw-w64\bin
E:\Anaconda\Library\usr\bin 
E:\Anaconda\Library\bin

在这里插入图片描述
配置完成之后测试安装是否成功:
搜索cmd或者win+r键入cmd:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果报错大概率是环境变量问题,认真弄。

2、安装cuda与cudnn
①查看显卡支持的最高CUDA的版本,以便下载对应的CUDA安装包:
win+R输入cmd进入命令提示符,输入:nvidia-smi
在这里插入图片描述
我这里在未安装之前显示的是11.6,表示最高支持11.6,不是只能下载11.6。由于电脑比较拉跨,这里选择10.2版本,在NVIDIA官方网站即可下载,地址为:https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述
安装包下载完成之后先安装第一个最大的哪个:基本就是一路向下,问你啥都勾选。
在这里插入图片描述
再安装两个比较小的补丁,这个补丁直接精简安装就行。

②确定CUDA版本对应的cuDNN版本并安装:
cudnn下载地址:https://developer.nvidia.com/rdp/cudnn-archive (需要注册NV账号),这里面直接写着有对应版本,我这里cuda10.2对应的有挺多版本,任选一个:
在这里插入图片描述
③安装pytorch
首先看pytorch与cuda的对应版本关系:
在这里插入图片描述
GPU版本的pytorch建议离线安装,安装包地址:https://download.pytorch.org/whl/torch_stable.html。
找到对应的cuda版本,python版本,系统版本进行安装,我这里安装anaconda时python版本是3.7,cuda是10.2,Pytorch版本选择1.9.0,所以最终下载的安装包是:
在这里插入图片描述
其中cu代表了cuda版本,cp代表了python版本,torch代表要安装的pytorch版本。
安装过程直接参考b站视频:https://www.bilibili.com/video/BV1Cr4y1u76N/?p=6&spm_id_from=333.1007.top_right_bar_window_history.content.click&vd_source=2a10d30b8351190ea06d85c5d0bfcb2a。
后续的torchvision和pycharm的安装都直接看视频来的快。

二、安装docker

进入Docker Desktop下载桌面版的docker
在这里插入图片描述
下载完成之后双击打开安装包进行安装,安装完成之后双击打开,如果此时报错:Docker Desktop is unable to detect a Hypervisor
解决:进入控制面板->程序->启用或关闭windows功能->勾选Hyper-V,此时应该会自动重启电脑,如果没有的话手动重启。
此时再次双击打开docker,如果报另一个错,类似下面这样的:
在这里插入图片描述
解决:以管理员权限打开powershell,输入wsl --update更新wsl,此时应该就可以了。
打开docker之后,界面应该如下:
在这里插入图片描述

三、部署

3.1、安装工具链镜像

从地平线天工开物cpu docker hub获取部署所需要的CentOS Docker镜像。使用最新的镜像v1.13.6(实测需要梯子才能进这个网站)
在这里插入图片描述
以管理员模式运行CMD,输入docker,可以显示出docker的帮助信息:
在这里插入图片描述
在cmd中输入命令docker pull openexplorer/ai_toolchain_centos_7:v1.13.6,之后会自动开始镜像的安装。安装成功之后,即可在docker中看到成功安装的工具链镜像:
在这里插入图片描述

3.2、配置天工开物OpenExplorer工具包

OpenExplorer工具包的下载,需要wget支持,wget的下载链接为:https://eternallybored.org/misc/wget/。下载x64对应的压缩包。
在这里插入图片描述
下载完成解压之后如下图:
在这里插入图片描述
然后将wget.exe复制到C:\Windows\System32下:
在这里插入图片描述
这样就可以了。然后win+R→cmd,输入wget,出现如下的界面说明安装成功:
在这里插入图片描述
安装好之后即可在cmd中通过如下命令下载OpenExplorer工具包:也可以自己选择其他版本(https://developer.horizon.ai/forumDetail/136488103547258769)

wget -c ftp://vrftp.horizon.ai/Open_Explorer_gcc_9.3.0/2.2.3/horizon_xj3_open_explorer_v2.2.3a_20220701.tar.gz

3.3、创建深度学习虚拟空间,安装依赖:

①创建虚拟环境:
打开anaconda prompt,创建虚拟环境
在这里插入图片描述
在这里插入图片描述
创建完成之后进入虚拟环境:conda activate test
②安装ONNX:
由于需要将Pytorch模型是可以转为ONNX模型,所以需要这一步

# 安装关键包ONNX
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple onnx

③安装yolov5需要的一些包:
安装之前最好去搜一搜版本对应关系,这里是python3.7,如果版本不兼容后面会报错。

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple matplotlib>=3.2.2 numpy>=1.18.5 opencv-python>=4.1.1 Pillow>=7.1.2 PyYAML>=5.3.1 requests>=2.23.0 scipy>=1.4.1 tqdm>=4.64.0 tensorboard>=2.4.1 pandas>=1.1.4 seaborn>=0.11.0 ipython psutil thop>=0.1.1

3.4、下载yolov5项目源码并运行

本篇博客大部分参考https://blog.csdn.net/Zhaoxi_Li/article/details/126651890?spm=1001.2014.3001.5502,使用的也是他分享的源码,直接进百度网盘下载项目:https://pan.baidu.com/share/init?surl=K4WhC9vaA7p__uWS-ovn8A,提取码:0A09。
在这里插入图片描述
流程如下,可以看到对应目录和操作,需要进入虚拟空间:
在这里插入图片描述
这样测试成功之后环境大概率没问题,可以进行后续,本篇不自己训练模型,直接使用原始模型进行部署。

3.5、pytorch的pt模型文件转onnx

旭日x3派当前BPU支持onnx的opset版本为11,不用这个版本就会报错:
注意所在目录,需要在yolov5-master下。

python .\export.py --weights .\models\yolov5s.pt --include onnx --opset 11

在这里插入图片描述

3.6、最重要且最难的部分:ONNX模型转换成bin模型

1、启动docker,将需要用到的文件夹挂载到docker中:
在进入docker之前,先确定几个内容:
******天工开物OpenExplorer根目录:我的环境下是"G:\bushu_xiangguan\horizon_xj3_open_explorer_v2.2.3a_20220701",记得加双引号防止出现空格,该目录要挂载在docker中/open_explorer目录下。
******dataset根目录(放数据集的地方,这里没用到):我的环境下是"G:\bushu_xiangguan\Codes\dateset",记得加双引号防止出现空格,该目录需要挂载在docker中的/data/horizon_x3/data目录下。
******辅助文件夹根目录:官方教程其实是没有这个过程的,把这个挂载在docker里,就是充当个类似U盘的介质。比如在我的环境下是"G:\bushu_xiangguan\BPUCodes",我可以在windows里面往这个文件夹拷贝数据,这些数据就可以在docker中使用,该目录需要挂载在docker中的/data/horizon_x3/codes目录下。
上面这些目录都需要自己建。

win+R→cmd,进入命令符,输入如下指令即可进入docker:
CMD不支持换行,记得删掉后面的\然后整理为一行

docker run -it --rm \
-v "G:\bushu_xiangguan\horizon_xj3_open_explorer_v2.2.3a_20220701":/open_explorer \
-v "G:\bushu_xiangguan\Codes\dateset":/data/horizon_x3/data \
-v "G:\bushu_xiangguan\BPUCodes":/data/horizon_x3/codes \
openexplorer/ai_toolchain_centos_7:v1.13.6

在这里插入图片描述
两个箭头是挂载的目标目录:其中天工开物OpenExplorer根目录挂载到了open_explorer目录下;dataset根目录和辅助文件夹根目录挂载到了data/horizon_x3下的codes和data目录下。

2、开启模型转换主流程:
首先在BPUcodes下新建yolov5目录,在yolov5中再新建一个bpucodes,将前面转换好的onnx模型放进去。
2.1、onnx模型检查:
docker中进入bpucodes目录:
在这里插入图片描述
输入hb_mapper checker --model-type onnx --march bernoulli2 --model yolov5s.onnx开始模型检查。如下图即检查成功。
在这里插入图片描述
检查指令的各个参数含义如下:
在这里插入图片描述
实际上在天工开物工具包里提供了脚本进行模型转换各个步骤,以yolov5为例子,路径如下:
G:\bushu_xiangguan\horizon_xj3_open_explorer_v2.2.3a_20220701\ddk\samples\ai_toolchain\horizon_model_convert_sample\04_detection\03_yolov5s\mapper
在这里插入图片描述
上面进行模型验证的命令实际上也就是01_check.sh执行的主要内容。
2.2、准备校准数据
这步实际上就是运行02_preprocess.sh这个脚本,这个脚本的核心调用的是python文件data_preprocess.py。它位于:
G:\bushu_xiangguan\horizon_xj3_open_explorer_v2.2.3a_20220701\ddk\samples\ai_toolchain\horizon_model_convert_sample。
如果要部署自己训练的模型的话,这个工具包里没有对应的脚本去准备校准数据,所以这个py是比较好的选择,将写完的prepare_calibration_data.py文件也放进自己建的bpucodes文件夹中,这里面的src_root就是待校准的图片100张,这里使用coco数据集里的。dst_root就是保存校准完的图片的文件夹。

# prepare_calibration_data.py
import os
import cv2
import numpy as npsrc_root = '/open_explorer/ddk/samples/ai_toolchain/horizon_model_convert_sample/01_common/calibration_data/coco'
cal_img_num = 100  # 想要的图像个数
dst_root = '/data/horizon_x3/codes/yolov5/bpucodes/calibration_data'## 1. 从原始图像文件夹中获取100个图像作为校准数据
num_count = 0
img_names = []
for src_name in sorted(os.listdir(src_root)):if num_count > cal_img_num:breakimg_names.append(src_name)num_count += 1# 检查目标文件夹是否存在,如果不存在就创建
if not os.path.exists(dst_root):os.system('mkdir {0}'.format(dst_root))## 2 为每个图像转换
# 参考了OE中/open_explorer/ddk/samples/ai_toolchain/horizon_model_convert_sample/01_common/python/data/下的相关代码
# 转换代码写的很棒,很智能,考虑它并不是官方python包,所以我打算换一种写法## 2.1 定义图像缩放函数,返回为np.float32
# 图像缩放为目标尺寸(W, H)
# 值得注意的是,缩放时候,长宽等比例缩放,空白的区域填充颜色为pad_value, 默认127
def imequalresize(img, target_size, pad_value=127.):target_w, target_h = target_sizeimage_h, image_w = img.shape[:2]img_channel = 3 if len(img.shape) > 2 else 1# 确定缩放尺度,确定最终目标尺寸scale = min(target_w * 1.0 / image_w, target_h * 1.0 / image_h)new_h, new_w = int(scale * image_h), int(scale * image_w)resize_image = cv2.resize(img, (new_w, new_h))# 准备待返回图像pad_image = np.full(shape=[target_h, target_w, img_channel], fill_value=pad_value)# 将图像resize_image放置在pad_image的中间dw, dh = (target_w - new_w) // 2, (target_h - new_h) // 2pad_image[dh:new_h + dh, dw:new_w + dw, :] = resize_imagereturn pad_image## 2.2 开始转换
for each_imgname in img_names:img_path = os.path.join(src_root, each_imgname)img = cv2.imread(img_path)  # BRG, HWCimg = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # RGB, HWCimg = imequalresize(img, (640, 640))img = np.transpose(img, (2, 0, 1))  # RGB, CHW# 将图像保存到目标文件夹下dst_path = os.path.join(dst_root, each_imgname + '.rgbchw')print("write:%s" % dst_path)# 图像加载默认就是uint8,但是不加这个astype的话转换模型就会出错# 转换模型时候,加载进来的数据竟然是float64,不清楚内部是怎么加载的。img.astype(np.uint8).tofile(dst_path) print('finish')

更改src_root 和drt_root为自己的路径。执行python3 prepare_callbration_data.py
在这里插入图片描述

2.3、模型转换
模型转换的核心在于配置目标的yaml文件。官方也提供了一个yolov5s_config.yaml可供用户直接试用,每个参数都给了注释。然而模型转换的配置文件参数太多,如果想改参数都不知道如何下手。本yaml模板适用于的模型具有如下属性:无自定义层,换句话说,BPU支持该模型的所有层。输入节点只有1个,且输入是图像。
自己写的yolov5_simple.yaml文件也放到bpucodes下。

model_parameters:onnx_model: 'yolov5s.onnx'output_model_file_prefix: 'yolov5s'march: 'bernoulli2'
input_parameters:input_type_train: 'rgb'input_layout_train: 'NCHW'input_type_rt: 'nv12'norm_type: 'data_scale'scale_value: 0.003921568627451input_layout_rt: 'NHWC'
calibration_parameters:cal_data_dir: './calibration_data'calibration_type: 'max'max_percentile: 0.9999
compiler_parameters:compile_mode: 'latency'optimize_level: 'O3'debug: Falsecore_num: 2  # x3p是双核BPU,所以指定为2可以速度更快

输入:hb_mapper makertbin --config convert_yolov5s.yaml --model-type onnx即开始模型转换。转换成功后,得到model_output/yolov5s.bin,它就是上板运行所需要的模型文件。
在这里插入图片描述

四、上板运行

在这里插入图片描述
将这些文件拷贝到x3派新建的测试文件夹中,一部分是要到百度网盘中获取的。
输入sudo apt-get install libopencv-dev安装opencv库,进入这里这个test_yolov5文件夹,执行:python3 setup.py build_ext --inplace编译后处理代码,得到lib/pyyolotools.cpython-38-aarch64-linux-gnu.so文件。

输入:sudo python3 inference_model_bpu.py进行推理,推理完成之后会保存结果图片:
在这里插入图片描述
这个未优化的初始yolvv5模型还是很捞的,推理速度很慢。但是这里后处理速度很快,cython封装加速的结果。后处理就是指模型推理完成之后在图片上画出结果的过程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/36841.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端git约定式规范化提交-commitizen

当使用commitizen进行代码提交时,commitizen会提示你在提交代码时填写所必填的提交字段信息内容。 1、全局安装commitizen npm install -g commitizen4.2.4 2、安装并配置 cz-customizeable 插件 2.1 使用 npm 下载 cz-customizeable npm i cz-customizeable6.…

【论文复现】——基于LM优化的NDT点云配准算法

目录 一、算法原理1、论文概述2、参考文献二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接,爬虫自重。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT生成的文章。 一、算法原理 1、论文概述 传统的正态分布变换配准算法处理初始位姿变换相…

办公软件WPS与Office的区别

临近计算机考试很多同学在纠结我是报wps好?还是ms office好?下面就来详细说说。 1、wps属于国内金山公司的办公软件,里面包含word、Excel和PPT。考试是2021年开始的! 2、MS(Microsoft 微软) office属于美…

AI产品经理面试

把优秀当习惯把优秀当习惯肯定不是口头说说,那有什么判断标准吗? 当我做完一件事儿的时候,我会看它有没有突破我的舒适圈、能不能惊艳到我自己。这就是我的判断标准。 在自我介绍和经历介绍时,面试者应该注重以下几个方面&#xf…

核方法总结(四)——高斯过程回归学习笔记

一、定义 基于核方法的线性回归模型和传统线性回归一样,可以用未知数据进行预测,但不能确定 预测的可信度。在参考书第二章中可知,基于贝叶斯方法可以实现对未知数据依概率预测,进而可得到预测的可信度。这一方法中,通…

嵌入式Linux系统编程 — 4.7 regcomp、regexec、regfree正则表达式函数

目录 1 为什么需要正则表达式 2 正则表达式简介 3 正则表达式规则 4 regcomp、regexec、regfree函数 4.1 函数介绍 4.2 URL格式案例 1 为什么需要正则表达式 在许多的应用程序当中, 有这样的应用场景: 给定一个字符串,检查该字符串是否…

分布式锁及其实现与应用场景

分布式锁及其实现与应用场景 分布式锁是一种用于在分布式系统中协调多个进程或线程对共享资源进行访问的机制。它的主要目的是确保在同一时间只有一个进程或线程可以访问特定资源,从而避免数据竞争和不一致问题。分布式锁通常用于集群环境中,例如微服务…

Rpc服务的提供方(Rpcprovider)的调用流程

首先,服务的提供方,会通过rpcprovider向rpc服务方注册rpc服务对象和服务方法, 那么,我们通过protobuf提供的抽象层的service和method,将服务对象和它所对应的服务方法记录在map表中, 当它启动以后&#xff…

Qt之饼图(Pie Graph)

[TOC](Qt之饼图(Pie Graph)) 饼图名为Pie Graph,用于显示一个数据系列中各项的大小与各项总和的比例。本文基于QtCharts实现饼图的显示。 1.实现过程 1.1环境配置 (1)首先想要使用QtCharts模块,需要在安装qt时选择勾选安装QtCha…

【名企专访】|格行自有格行的骄傲,格行骄傲在哪?格行随身wifi火爆出圈的真实内幕!

最近刷视频在一个随身wifi的帖子下边看到,有个网友这样回复:“随身wifi行业真的该整治了,到处是跑路的,夸大宣传的,本来在线上买就是图个方便,现在搞得不敢买。本来利民的产品,被搞得乌烟瘴气&a…

甄选范文“论云上自动化运维及其应用”,软考高级论文,系统架构设计师论文

论文真题 云上自动化运维是传统IT运维和DevOps的延伸,通过云原生架构实现运维的再进化。云上自动化运维可以有效帮助企业降低IT运维成本,提升系统的灵活度,以及系统的交付速度,增强系统的可靠性,构建更加安全、可信、开放的业务平台。 请围绕“云上自动化运维及其应用”…

windows 10 安装tcping 使用教程

1 官网下载:tcping下载 2 复制tcping 到win10系统目录C:\Windows\System32 3 tcping 网址测试,可以指定端口 4 tcping 测试端口联通 5 tcping http模式

【原创图解 算法leetcode 146】实现一个LRU缓存淘汰策略策略的数据结构

1 概念 LRU是Least Recently Used的缩写,即最近最少使用,是一种常见的缓存淘汰算法。 其核心思想为:当内存达到上限时,淘汰最久未被访问的缓存。 2 LeetCode LeetCode: 146. LRU缓存 3 实现 通过上面LRU的淘汰策略可知&#…

【多维动态规划】Leetcode 221. 最大正方形【中等】

最大正方形 在一个由 ‘0’ 和 ‘1’ 组成的二维矩阵内,找到只包含 ‘1’ 的最大正方形,并返回其面积。 示例 1: 输入:matrix [[“1”,“0”,“1”,“0”,“0”],[“1”,“0”,“1”,“1”,“1”],[“1”,“1”,“1”,“1”,“…

程序中的Reduce(CPU和GPU)

前提 最近在看Reduce(归约)的相关知识和代码,做个总结。这里默认大家已经明白了Reduce的基础概念。 Reduce 根据参考链接一,Recude常见的划分方法有两种: 相邻配对:元素和它们相邻的元素配对 交错配对…

【Mybatis】Mybatis初识-通过源码学习执行流程

文章目录 1.Mybatis核心组件1.1 SqlSession1.2 SqlSessionFactory1.3 Mapper1.4 MappedStatement1.5 Executor 2. Mybatis各组件之间关系3. 构建SqlSessionFactory3.1 从XML文件中构建3.2 不使用XML构建SqlSessionFactory 4. 如何从SqlSessionFactory获取SqlSession5.获取Mappe…

【AMBA】APB总线的个人学习记录(一):理论知识

精通APB (Advanced Peripheral Bus) 总线设计通常意味着你不仅理解其基础概念,而且能够在实际的硬件设计中灵活运用APB总线,解决复杂问题,并优化设计。以下是一些关键点,当你掌握这些方面时,可以说你对APB总线设计有了…

《昇思25天学习打卡营第6天|onereal》

Vision Transformer(ViT)简介 近些年,随着基于自注意(Self-Attention)结构的模型的发展,特别是Transformer模型的提出,极大地促进了自然语言处理模型的发展。由于Transformers的计算效率和可扩…

[OtterCTF 2018]Bit 4 Bit

我们已经发现这个恶意软件是一个勒索软件。查找攻击者的比特币地址。** 勒索软件总喜欢把勒索标志丢在显眼的地方,所以搜索桌面的记录 volatility.exe -f .\OtterCTF.vmem --profileWin7SP1x64 filescan | Select-String “Desktop” 0x000000007d660500 2 0 -W-r-…

数据库系统概论(第5版教材)

第一章 绪论 1、数据(Data)是描述事物的符号记录; 2、数据库系统的构成:数据库 、数据库管理系统(及其开发工具) 、应用程序和数据库管理员; 3、数据库是长期存储在计算机内、有组织、可共享的大量数据的集合&…