pytest数据驱动DDT(数据库/execl/yaml)

 常见的DDT技术


    数据结构:
        列表、字典、json串
    文件:
        txt、csv、excel      
    数据库:
        数据库链接
        数据库提取
    参数化:
        @pytest.mark.parametrize()
        @pytest.fixture()

DDT参数化

  • DDT技术和@pytest.mark.parametrize参数化结合
  • DDT技术和conftest.py结合

 DDT上面两种方法不要混用

  • 法一:import+@pytest.mark.parametrize参数化:可以设置一个单独的数据驱动层,存放数据文件和数据驱动。团队成员需要数据时,直接import 然后使用
  • 法二:使用conftest.py+@pytedt.fixture。conftest.py原理是,运行pytest项目之前,默认优先执行同级目录下的conftest.py文件,数据处理完后,加上固件

 一、@pytest.mark.parametrize

1.数据库驱动(已安装MySQL)

安装mysqlclient模块

brew install mysql pkg-config //windows不用该步骤
pip3 install mysqlclient

import MySQLdb  # 必须要安装mysqlclient模块
import pytest# 数据库链接
conn = MySQLdb.connect(user='root',passwd='m****',host='localhost',port=3306,db='basejnu'  # 数据库database
)def get_data():query_sql = "select customer_id,account_num,customer_region_id from customer LIMIT 20"  # 获取数据lst = []cursor = conn.cursor()  # 创建游标try:cursor.execute(query_sql)r = cursor.fetchall()  # 获取customer_id,account_num数据print(r)for x in r:u = (x[0], x[1])  # 第一列和第二列lst.append(u)return lstfinally:cursor.close()conn.close()@pytest.mark.parametrize('customer_id,account_num', get_data())
def test01(customer_id, account_num):print(customer_id, account_num)if __name__ == '__main__':pytest.main(["-sv", "get_mysql.py"])

运行效果:

 2. execl/csv数据驱动 

 安装pandas模块

pip3 install pandas
import pandas as pd
import pytestdef get_data():
# execl文件将 read_csv改为 read_execl即可df = pd.read_csv('/Users/mac/Documents/study23/data_study/data/customer1997.csv', index_col=None)data = pd.DataFrame(df)  # 转化为列表data00 = data[['customer_id', 'Frequency']]  # 获取所需部分# data01 = data00.head()  # 获取全部数据data01 = data00.head(5)  #获取前5行数据print(data01)data02 = data01.valuesprint(data02)return data02class Test_csv():@pytest.mark.parametrize('id,fre', get_data())def test_002(self, id, fre):print(id)print(fre)print("*"*10)if __name__ == '__main__':pytest.main(["-sv", "get_execl.py"])

 运行效果:

3. yaml数据驱动

data_y.yaml

yaml_util.py

import yamlclass YamlUtil:def __init__(self, yaml_file):"""通过init方法把Yaml文件传入到这个类:param yaml_file:"""self.yaml_file = yaml_file# 读取Yaml文件def read_yaml(self):"""读取Yaml,对yaml反序列化,就是把我们的yaml格式转换成dict格式:return:"""with open(self.yaml_file, encoding='utf-8')as f:value = yaml.load(f, Loader=yaml.FullLoader)return value

测试用例get_yaml.py

import pytest
import os
from common.yaml_util import YamlUtil# 文件地址
realpath = os.path.abspath(os.path.join(os.path.dirname(os.path.split(os.path.realpath(__file__))[0]), '.'))
# 项目地址
project_dir = os.path.dirname(realpath)@pytest.mark.parametrize('args', YamlUtil(project_dir + '/data_study/data/data_y.yaml').read_yaml())
def test_01_huahua(args):name = args['name']password = args['password']print(name)print(password)if __name__ == '__main__':pytest.main(['-vs', "get_yaml.py"])

运行结果:

二、DDT技术和conftest.py结合

pytest有更方便的管理数据驱动方法的办法:conftest.py

conftest.py特点:

1.conftest.py名字固定的,不可以修改

2.conftest.py文件所在目录必须存在__init__py文件

3.conftest.py文件不能被其他文件导入

4.所有同目录测试文件运行前都会执行conftest.py文件

conftest.py一般和@pytest.fixture()固件放在一起使用

conftest原理是,运行pytest项目之前,默认优先执行当前层的conftest.py文件,数据处理完后,加上固件赋予直接传参的能力.注意;如果想conftest.py对所有文件都生效的话,一般建在根目录下

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/3578.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java集合框架-Collection-List-vector(遗留类)

目录 一、vector层次结构图二、概述三、底层数据结构四、常用方法五、和ArrayList的对比 一、vector层次结构图 二、概述 Vector类是单列集合List接口的一个实现类。与ArrayList类似,Vector也实现了一个可以动态修改的数组,两者最本质的区别在于——Vec…

有哪些人工智能/数据分析领域可以考取的证书?

一、TensorFlow谷歌开发者认证 TensorFlow面向学生、开发者、数据科学家等人群,帮助他们展示自己在用 TensorFlow 构建、训练模型的过程中所学到的实用机器学习技能。 添加图片注释,不超过 140 字(可选) TensorFlow 的产品总监 …

SQL中的锁

一、概述 介绍 锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,除传统的计算资(CPU、RAM、I/0)的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲…

keep-alive的理解和使用方法(使用时的生命周期)

文章目录 一、Keep-alive 是什么二、使用场景三、原理分析四、思考题:缓存后如何获取数据beforeRouteEnteractived 参考文献 一、Keep-alive 是什么 keep-alive是vue中的内置组件,能在组件切换过程中将状态保留在内存中,防止重复渲染DOM ke…

el-form 表单设置某个参数非必填验证

html <el-form ref"form" :rules"rules"><el-form-item prop"tiktokEmail" label"邮箱" ><el-input v-model"form.tiktokEmail" placeholder"邮箱" ></el-input></el-form-item&…

项目实战:Qt获取CTP量化交易接口测试数据工具 v1.0.0(获取深度行情数据、订阅取消订阅)

若该文为原创文章&#xff0c;转载请注明出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/137937666 红胖子(红模仿)的博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬结…

VSCODE自定义代码片段简述与基础使用

目录 一、 简述二 、 基础使用说明2.1 新建一个代码块工作区间2.2 语法 三、 示例四、 参考链接 一、 简述 VSCode的自定义代码片段功能允许开发者根据自己的需求定义和使用自己的代码片段&#xff0c;从而提高编码效率。 优点: 提高效率&#xff1a; 自定义代码片段能够减少…

乐鑫的ESP32-S3芯片的LE能实现beacon功能吗?

最近帮一个客户做ESP32定位器方案&#xff0c;客户提出这个疑问&#xff0c;乐鑫的ESP32-S3芯片的LE能实现beacon功能吗&#xff1f;针对这个问题&#xff0c;启明云端工程师小启给出这样的回复。 回答是可以的&#xff0c;大家可以看idf的例程。 ESP-IDF iBeacon demo From …

时间,空间复杂度讲解——夯实根基

前言&#xff1a;本节内容属于数据结构的入门知识——算法的时间复杂度和空间复杂度。 时间复杂度和空间复杂度的知识点很少&#xff0c; 也很简单。 本节的主要篇幅会放在使用具体例题来分析时间复杂度和空间复杂度。本节内容适合刚刚接触数据结构或者基础有些薄弱的友友们哦。…

C/C++开发,opencv-ml库学习,随机森林(RTrees)应用

目录 一、随机森林算法 1.1 算法简介 1.2 OpenCV-随机森林&#xff08;Random Forest&#xff09; 二、cv::ml::RTrees应用 2.2 RTrees应用 2.2 程序编译 2.3 main.cpp全代码 一、随机森林算法 1.1 算法简介 随机森林算法是一种集成学习&#xff08;Ensemble Learning&a…

百度沈抖:智能,生成无限可能

4月16日&#xff0c;Create 2024百度AI开发者大会在深圳举行。会上&#xff0c;百度集团执行副总裁、百度智能云事业群总裁沈抖正式发布新一代智能计算操作系统——百度智能云万源。它能管理万卡规模的集群&#xff0c;极致地发挥GPU、CPU的性能&#xff1b;它有强大的大模型作…

本地环境运行Llama 3大型模型:可行性与实践指南

简介&#xff1a; Llama 是由 Meta&#xff08;前身为 Facebook&#xff09;的人工智能研究团队开发并开源的大型语言模型&#xff08;LLM&#xff09;&#xff0c;它对商业用途开放&#xff0c;对整个人工智能领域产生了深远的影响。继之前发布的、支持4096个上下文的Llama 2…

Python 数据可视化 boxplot

Python 数据可视化 boxplot import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns# 读取 TSV 文件 df pd.read_csv(result.tsv, sep\t)normal_df df[df["sample_name"].str.contains("normal")] tumor_df df…

重磅!!!监控分布式NVIDIA-GPU状态

简介&#xff1a;Uptime Kuma是一个易于使用的自托管监控工具&#xff0c;它的界面干净简洁&#xff0c;部署和使用都非常方便&#xff0c;用来监控GPU是否在占用&#xff0c;非常美观。 历史攻略&#xff1a; docker应用&#xff1a;搭建uptime-kuma监控站点 win下持续观察…

Unity Meta Quest MR 开发(七):使用 Stencil Test 模板测试制作可以在虚拟与现实之间穿梭的 MR 传送门

文章目录 &#x1f4d5;教程说明&#x1f4d5;Stencil Test 模板测试&#x1f4d5;Stencil Shader&#x1f4d5;使用 Unity URP 渲染管线设置模板测试⭐Render Pipeline Asset 与 Universal Renderer Data⭐删除场景中的天空盒⭐设置虚拟世界的层级 Layer⭐设置模板测试 &#…

《Vid2Seq》论文笔记

原文链接 [2302.14115] Vid2Seq: Large-Scale Pretraining of a Visual Language Model for Dense Video Captioning (arxiv.org) 原文笔记 What&#xff1a; 《Vid2Seq: Large-Scale Pretraining of a Visual Language Model for Dense Video Captioning》 作者提出一种多…

深度学习检测算法YOLOv5的实战应用

在当前的检测项目中&#xff0c;需要一个高效且准确的算法来处理大量的图像数据。经过一番研究和比较&#xff0c;初步选择了YOLOv5作为算法工具。YOLOv5是一个基于深度学习的检测算法&#xff0c;以其快速和准确而闻名。它不仅能够快速处理图像数据&#xff0c;还能提供较高的…

【OceanBase诊断调优】——hpet(高精度时钟源)引起的CPU高问题排查

最近总结一些诊断OCeanBase的一些经验&#xff0c;出一个【OceanBase诊断调优】专题出来&#xff0c;也欢迎大家贡献自己的诊断OceanBase的方法。 1. 前言 昨天在问答区帮忙排查一个用户CPU高的问题&#xff0c;帖子链接&#xff1a;《刚刚新安装的OceanBase集群&#xff0c;…

Rime 如何通过 iCloud 实现词库多端同步,Windows、iOS、macOS

Rime 如何通过 iCloud 实现词库多端同步&#xff0c;Windows、iOS、macOS 一、设备环境 最理想的输入环境就是在多端都使用同一个词库&#xff0c;这样能保持多端的输入习惯是一致的。 以我为例&#xff0c;手头每天都要用到的操作平台和对应的输入法&#xff1a; 操作系统设…

【热门前端【vue框架】】——vue框架和node.js的下载和安装保姆式教程

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;程序员-曼亿点 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 曼亿点 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a…