【机器学习】在【R语言】中的应用:结合【PostgreSQL数据库】的【金融行业信用评分模型】构建

目录

1.数据库和数据集的选择

1.准备工作

2.PostgreSQL安装与配置

3.R和RStudio安装与配置

2.数据导入和预处理

1.连接数据库并导入数据

1.连接数据库

2.数据检查和清洗

1.数据标准化

2.拆分训练集和测试集

3.特征工程

1.生成新特征

2.特征选择

4.模型训练和评估

1.逻辑回归

2.随机森林

3.XGBoost

4.模型比较与选择

5.深度挖掘和优化

1.模型调参

2.特征交互和组合

6.实际应用中的挑战与解决方案

1.数据偏差

1.持续监控模型性能

2.在线学习和模型更新

3.数据增强

2.模型过拟合

1.交叉验证

2.正则化

3.增加训练数据

3.业务需求变化

1.模块化设计

2.自动化流程

3.多模型集成

附录

完整代码示例


金融行业由于其高度数据驱动的特点,是机器学习技术应用的理想领域。信用评分作为金融领域的重要应用,通过评估借款人的信用风险,帮助金融机构做出放贷决策。本文将详细介绍如何使用R语言结合PostgreSQL数据库基于公开数据集构建一个信用评分模型

1.数据库和数据集的选择

本次分析将使用Kaggle上的德国信用数据集(German Credit Data),并将其存储在PostgreSQL数据库中。该数据集包含1000个样本,每个样本有20个特征,用于描述借款人的信用情况。

1.准备工作

在开始我们的分析之前,我们需要安装和配置所需的软件和库。

  1. 安装PostgreSQL:PostgreSQL是一个强大的开源关系型数据库管理系统,可以方便地处理大规模数据。
  2. 安装R和RStudio:R是本次分析的主要编程语言,RStudio作为集成开发环境。
  3. 安装必要的R包:包括DBIRPostgreSQL用于数据库连接,dplyr用于数据处理,caretxgboost用于机器学习模型。

2.PostgreSQL安装与配置

  1. 访问PostgreSQL官方网站下载适用于您操作系统的安装包。
  2. 按照官方网站上的说明进行安装,确保安装过程中包括pgAdmin管理工具。
  3. 安装完成后,打开pgAdmin并创建一个名为credit_rating的数据库。
  4. 在数据库中创建表并导入德国信用数据集。我们可以使用SQL脚本完成此操作:
    CREATE TABLE german_credit_data (ID SERIAL PRIMARY KEY,Status_Checking VARCHAR(255),Duration INT,Credit_History VARCHAR(255),Purpose VARCHAR(255),Credit_Amount INT,Savings_Account VARCHAR(255),Present_Employment_Since VARCHAR(255),Installment_Rate INT,Personal_Status_Sex VARCHAR(255),Other_Debtors_Guarantors VARCHAR(255),Present_Residence INT,Property VARCHAR(255),Age INT,Other_Installment_Plans VARCHAR(255),Housing VARCHAR(255),Number_of_Existing_Credits INT,Job VARCHAR(255),Number_of_People_Liable INT,Telephone VARCHAR(255),Foreign_Worker VARCHAR(255),CreditRisk INT
    );
    

    然后使用批量导入工具将CSV数据文件导入到表中。

    3.R和RStudio安装与配置

  • 访问R官方网站下载适用于您操作系统的安装包,并按照提示进行安装。
  • 访问RStudio官方网站下载RStudio桌面版安装包,并进行安装。
  • 打开RStudio并安装必要的R包:
    install.packages(c("DBI", "RPostgreSQL", "dplyr", "caret", "xgboost", "pROC"))
    

    2.数据导入和预处理

  • 数据导入和预处理是机器学习流程的基础。我们将通过R连接PostgreSQL数据库,读取数据,并进行初步的预处理。

    1.连接数据库并导入数据

1.连接数据库

# 加载必要的包
library(DBI)
library(RPostgreSQL)# 连接到PostgreSQL数据库
con <- dbConnect(PostgreSQL(), dbname = "credit_rating", host = "localhost", port = 5432, user = "your_username", password = "your_password")# 从数据库中读取数据
query <- "SELECT * FROM german_credit_data"
data <- dbGetQuery(con, query)# 查看数据结构
str(data)

2.数据检查和清洗

  • 在读取数据后,我们首先需要检查数据的完整性和质量。

    # 检查缺失值
    sum(is.na(data))
    

如果存在缺失值,我们可以选择删除缺失值所在的行,或者使用插值方法填补缺失值。对于本次分析,我们假设数据无缺失值。

1.数据标准化

数据标准化有助于提高模型的收敛速度和预测性能。我们使用scale函数对数值型特征进行标准化。

# 数据标准化
data_scaled <- scale(data[, -ncol(data)]) # 排除目标变量# 将标准化后的数据和目标变量合并
data <- cbind(data_scaled, data[, ncol(data)])
2.拆分训练集和测试集

为了评估模型性能,我们将数据分为训练集和测试集。通常我们将70%的数据用于训练,30%的数据用于测试。

# 拆分训练集和测试集
set.seed(123)
train_index <- sample(seq_len(nrow(data)), size = 0.7 * nrow(data))
train_data <- data[train_index, ]
test_data <- data[-train_index, ]

3.特征工程

特征工程是提高机器学习模型性能的重要步骤。通过生成新的特征和选择重要特征,可以显著提升模型的预测能力。

1.生成新特征

生成新的特征可以增加数据的信息量,从而提升模型性能。例如,我们可以生成交易金额的对数特征。

# 生成新的特征(如账户余额的对数转换)
train_data$log_balance <- log(train_data$Balance + 1)
test_data$log_balance <- log(test_data$Balance + 1)

2.特征选择

特征选择有助于减少模型复杂度,提高模型的泛化能力。我们可以使用基于特征重要性的特征选择方法。

# 特征选择(基于重要性)
library(caret)
control <- trainControl(method="repeatedcv", number=10, repeats=3)
model <- train(CreditRisk ~ ., data=train_data, method="rpart", trControl=control)
importance <- varImp(model, scale=FALSE)
print(importance)

4.模型训练和评估

在本部分,我们将使用多个机器学习算法进行模型训练,并比较它们的性能。

1.逻辑回归

逻辑回归是二分类问题中常用的基线模型。其优点是解释性强,计算效率高。

# 训练逻辑回归模型
model_logistic <- glm(CreditRisk ~ ., data=train_data, family=binomial)# 模型预测
predictions_logistic <- predict(model_logistic, test_data, type="response")
pred_class_logistic <- ifelse(predictions_logistic > 0.5, 1, 0)# 评估模型
confusionMatrix(factor(pred_class_logistic), factor(test_data$CreditRisk))

2.随机森林

随机森林是一种集成学习算法,通过构建多个决策树来提升模型的预测性能。

# 训练随机森林模型
library(randomForest)
model_rf <- randomForest(CreditRisk ~ ., data=train_data)# 模型预测
predictions_rf <- predict(model_rf, test_data)# 评估模型
confusionMatrix(predictions_rf, factor(test_data$CreditRisk))

3.XGBoost

XGBoost是一种高效的梯度提升算法,广泛应用于各类机器学习竞赛中。

# 训练XGBoost模型
library(xgboost)
dtrain <- xgb.DMatrix(data = as.matrix(train_data[-ncol(train_data)]), label = train_data$CreditRisk)
dtest <- xgb.DMatrix(data = as.matrix(test_data[-ncol(test_data)]), label = test_data$CreditRisk)params <- list(objective = "binary:logistic", eval_metric = "auc")
model_xgb <- xgb.train(params, dtrain, nrounds = 100)# 模型预测
predictions_xgb <- predict(model_xgb, dtest)
pred_class_xgb <- ifelse(predictions_xgb > 0.5, 1, 0)# 评估模型
confusionMatrix(factor(pred_class_xgb), factor(test_data$CreditRisk))

4.模型比较与选择

我们将通过ROC曲线和AUC值来比较各个模型的性能。

# 计算ROC曲线和AUC值
library(pROC)
roc_logistic <- roc(test_data$CreditRisk, predictions_logistic)
roc_rf <- roc(test_data$CreditRisk, as.numeric(predictions_rf))
roc_xgb <- roc(test_data$CreditRisk, predictions_xgb)# 绘制ROC曲线
plot(roc_logistic, col="blue", main="ROC曲线比较")
plot(roc_rf, col="red", add=TRUE)
plot(roc_xgb, col="green", add=TRUE)# 计算AUC值
auc_logistic <- auc(roc_logistic)
auc_rf <- auc(roc_rf)
auc_xgb <- auc(roc_xgb)legend("bottomright", legend=c(paste("Logistic (AUC =", round(auc_logistic, 2), ")"), paste("Random Forest (AUC =", round(auc_rf, 2), ")"), paste("XGBoost (AUC =", round(auc_xgb, 2), ")")), col=c("blue", "red", "green"), lwd=2)

5.深度挖掘和优化

在得到初步模型结果之后,我们可以通过调参和进一步的特征工程提升模型性能。

1.模型调参

通过超参数调优,我们可以进一步提升模型性能。例如,对随机森林和XGBoost模型进行调参:

# 随机森林调参
tune_rf <- tuneRF(train_data[-ncol(train_data)], train_data$CreditRisk, stepFactor=1.5, improve=0.01, ntreeTry=100, trace=TRUE)# XGBoost调参
params <- list(objective = "binary:logistic", eval_metric = "auc")
tune_xgb <- xgb.cv(params, dtrain, nrounds = 100, nfold = 5, showsd = TRUE, stratified = TRUE, print_every_n = 10, early_stopping_rounds = 20)

2.特征交互和组合

通过生成特征交互项和组合特征,可以增加数据的信息量,从而提升模型性能。

# 生成交互特征
train_data$age_balance <- train_data$Age * train_data$Balance
test_data$age_balance <- test_data$Age * test_data$Balance# 重新训练模型
model_xgb_interaction <- xgb.train(params, xgb.DMatrix(data = as.matrix(train_data[-ncol(train_data)]), label = train_data$CreditRisk), nrounds = 100)

6.实际应用中的挑战与解决方案

尽管模型在实验数据上表现良好,但在实际应用中会面临数据偏差、模型过拟合和业务需求变化等挑战。为了在真实环境中保持模型的有效性和可靠性,我们需要深入理解这些挑战并采取相应的解决方案。

1.数据偏差

1.持续监控模型性能

定义与重要性: 持续监控模型性能是指在模型部署后,定期评估其在新数据上的表现。这是确保模型在实际应用中保持稳定和可靠的关键步骤。

具体方法:

1.指标评估: 定期使用AUC、F1分数、精确度、召回率等指标评估模型性能。通过对比这些指标的历史记录,可以及时发现性能下降的趋势。

# 计算并记录模型性能指标
library(caret)
predictions <- predict(model_xgb, new_data)
auc_value <- roc(new_data$CreditRisk, predictions)$auc
f1_value <- F1_Score(y_pred = ifelse(predictions > 0.5, 1, 0), y_true = new_data$CreditRisk)
performance_metrics <- data.frame(AUC = auc_value, F1 = f1_value)

2.仪表板监控: 建立实时监控仪表板,自动更新并显示关键性能指标。可以使用Shiny或其他可视化工具实现。

library(shiny)
ui <- fluidPage(titlePanel("模型性能监控仪表板"),mainPanel(plotOutput("aucPlot"),plotOutput("f1Plot"))
)
server <- function(input, output) {output$aucPlot <- renderPlot({plot(performance_metrics$AUC, type="l", col="blue", xlab="时间", ylab="AUC", main="AUC值变化")})output$f1Plot <- renderPlot({plot(performance_metrics$F1, type="l", col="red", xlab="时间", ylab="F1分数", main="F1分数变化")})
}
shinyApp(ui = ui, server = server)

2.在线学习和模型更新

定义与重要性: 在线学习和模型更新是指模型在实际运行过程中不断吸收新的数据并进行调整,以适应数据分布的变化。这有助于保持模型的时效性和准确性。

具体方法:

1.增量学习: 使用增量学习算法,如SGD或Online Bagging,使模型能够处理流数据并不断更新。

library(glmnet)
# 使用增量学习更新逻辑回归模型
new_model <- glmnet(x = as.matrix(new_data[,-ncol(new_data)]), y = new_data$CreditRisk, family = "binomial", alpha = 0.5, lambda = 0.1, intercept = TRUE)

2.定期重新训练: 根据新数据定期重新训练模型,如每周或每月一次,确保模型能够捕捉最新的市场动态。

# 定期重新训练XGBoost模型
dtrain_new <- xgb.DMatrix(data = as.matrix(updated_train_data[-ncol(updated_train_data)]), label = updated_train_data$CreditRisk)
model_xgb_updated <- xgb.train(params, dtrain_new, nrounds = 100)

3.数据增强

定义与重要性: 数据增强是通过生成更多的样本,特别是对稀缺类别进行增强,来减少数据偏差的影响。数据增强可以提高模型在不同数据分布下的泛化能力。

具体方法:

1.合成少数过采样技术(SMOTE): 生成新的少数类样本,平衡数据分布。

library(DMwR)
balanced_data <- SMOTE(CreditRisk ~ ., data = train_data, perc.over = 200, perc.under = 200)

2.数据扩展: 对现有数据进行变换和扩展,如添加噪声、数据翻转等。

augmented_data <- data.frame(apply(train_data, 2, function(x) jitter(x, amount = 0.1)))

2.模型过拟合

1.交叉验证

定义与重要性: 交叉验证是一种模型评估方法,通过将数据集分为多个子集,交替使用每个子集作为验证集,其余子集作为训练集,从而全面评估模型性能。交叉验证可以有效防止过拟合。

具体方法:

1.K折交叉验证: 将数据分为K个子集,交替使用每个子集作为验证集。常用的K值包括5和10。

control <- trainControl(method="cv", number=10)
model_cv <- train(CreditRisk ~ ., data=train_data, method="rf", trControl=control)

2.留一法交叉验证: 每次只用一个样本作为验证集,其余样本作为训练集。适用于小规模数据集。

control_loo <- trainControl(method="LOOCV")
model_loo <- train(CreditRisk ~ ., data=train_data, method="rf", trControl=control_loo)

2.正则化

定义与重要性: 正则化通过在损失函数中加入惩罚项,防止模型过于复杂,从而减少过拟合风险。常用的正则化方法包括L1正则化(Lasso)和L2正则化(Ridge)。

具体方法:

1.L1正则化(Lasso): 在损失函数中加入权重绝对值的和。

model_lasso <- glmnet(x = as.matrix(train_data[,-ncol(train_data)]), y = train_data$CreditRisk, alpha = 1, family = "binomial")

2.L2正则化(Ridge): 在损失函数中加入权重平方的和。

model_ridge <- glmnet(x = as.matrix(train_data[,-ncol(train_data)]), y = train_data$CreditRisk, alpha = 0, family = "binomial")

3.弹性网正则化: 结合L1和L2正则化。

model_enet <- glmnet(x = as.matrix(train_data[,-ncol(train_data)]), y = train_data$CreditRisk, alpha = 0.5, family = "binomial")

3.增加训练数据

定义与重要性: 增加训练数据可以帮助模型更好地学习数据的真实分布,减少过拟合。通过收集更多的历史数据或生成合成数据,可以提高模型的泛化能力。

具体方法:

1..收集更多数据: 扩展数据来源,获取更多历史数据或跨区域数据。

# 假设通过新的数据源获取了更多数据
more_data <- read.csv("new_credit_data.csv")
combined_data <- rbind(train_data, more_data)

2.合成数据生成: 使用生成对抗网络(GAN)等方法生成合成数据。

# 使用合成数据生成工具(如Python中的GAN库)生成更多样本
# 注意:此处为伪代码,实际使用需参考具体工具文档
synthetic_data <- generate_synthetic_data(train_data)
combined_data <- rbind(train_data, synthetic_data)

3.业务需求变化

1.模块化设计

定义与重要性: 模块化设计是将模型设计成多个独立的模块,方便更新和替换部分模块,提升模型的灵活性和适应性。模块化设计有助于应对金融行业快速变化的业务需求。

具体方法:

1.分离数据处理和模型训练模块: 将数据清洗、特征工程与模型训练分离,方便独立更新。

# 数据处理模块
process_data <- function(raw_data) {# 数据清洗和特征工程代码cleaned_data <- raw_data # 假设处理后得到cleaned_datareturn(cleaned_data)
}# 模型训练模块
train_model <- function(processed_data) {model <- train(CreditRisk ~ ., data=processed_data, method="rf")return(model)
}# 使用模块化函数
cleaned_data <- process_data(raw_data)
model <- train_model(cleaned_data)

2.模型集成框架: 构建模型集成框架,方便引入和测试新的模型。 

# 模型集成框架
ensemble_models <- function(models, data) {predictions <- sapply(models, predict, newdata=data)final_prediction <- apply(predictions, 1, mean) # 简单平均融合return(final_prediction)
}# 使用集成模型
models <- list(model_rf, model_xgb, model_logistic)
final_prediction <- ensemble_models(models, test_data)

2.自动化流程

定义与重要性: 建立自动化的数据处理、模型训练和部署流程,可以提升响应速度,快速适应新的业务需求。自动化流程有助于减少人工干预,提高效率和可靠性。

具体方法:

1.自动化数据处理流程: 使用ETL(Extract, Transform, Load)工具自动化数据处理流程。

# 使用R语言中的ETL包(如odbc、dbplyr)自动化数据处理
library(odbc)
library(dbplyr)# 连接数据库
con <- dbConnect(odbc(), "CreditDB")# 自动化数据抽取和清洗
processed_data <- tbl(con, "raw_credit_data") %>%filter(!is.na(CreditRisk)) %>%mutate(Balance = ifelse(Balance < 0, 0, Balance)) %>%collect()

2.自动化模型训练和部署: 使用R语言的plumber包构建API接口,实现模型的自动化训练和部署。

library(plumber)# 模型训练函数
train_model_api <- function() {model <- train(CreditRisk ~ ., data=processed_data, method="rf")saveRDS(model, "credit_model.rds")return("Model trained and saved successfully")
}# 构建API
r <- plumb()
r$handle("POST", "/train_model", train_model_api)
r$run(port=8000)

3.多模型集成

定义与重要性: 使用多模型集成的方法,不同模型适应不同的市场环境,可以提升整体模型的稳定性和鲁棒性。集成学习通过组合多个模型的预测结果,通常能获得比单一模型更好的性能。

具体方法:

1.投票法: 对于分类问题,使用简单多数投票法融合多个模型的预测结果。

# 简单投票法集成
vote <- function(predictions) {final_pred <- apply(predictions, 1, function(x) names(sort(table(x), decreasing=TRUE)[1]))return(final_pred)
}# 使用集成模型
predictions <- sapply(models, predict, newdata=test_data)
final_prediction <- vote(predictions)

2.加权平均法: 对于回归问题或概率输出,使用加权平均法融合多个模型的预测结果。

# 加权平均法集成
weighted_avg <- function(predictions, weights) {final_pred <- rowSums(predictions * weights) / sum(weights)return(final_pred)
}# 使用集成模型
predictions <- sapply(models, predict, newdata=test_data)
weights <- c(0.5, 0.3, 0.2) # 假设权重
final_prediction <- weighted_avg(predictions, weights)

3.堆叠法: 使用更高级的模型(元学习器)对多个初级模型的预测结果进行二次学习,得到最终预测结果。

# 堆叠法集成
library(caretEnsemble)# 训练初级模型
models <- caretList(CreditRisk ~ ., data=train_data, trControl=trainControl(method="cv"), methodList=c("rf", "xgbTree", "glm"))# 训练元学习器
stack <- caretStack(models, method="glm")# 使用堆叠模型
final_prediction <- predict(stack, newdata=test_data)

附录

完整代码示例

请参阅下面的完整代码示例,详细展示了如何实现上述步骤。

# 加载必要的包
library(DBI)
library(RPostgreSQL)
library(dplyr)
library(caret)
library(randomForest)
library(xgboost)
library(pROC)# 连接到PostgreSQL数据库
con <- dbConnect(PostgreSQL(), dbname = "credit_rating", host = "localhost", port = 5432, user = "your_username", password = "your_password")# 从数据库中读取数据
query <- "SELECT * FROM german_credit_data"
data <- dbGetQuery(con, query)# 数据预处理
data_scaled <- scale(data[, -ncol(data)])
data <- cbind(data_scaled, data[, ncol(data)])# 拆分训练集和测试集
set.seed(123)
train_index <- sample(seq_len(nrow(data)), size = 0.7 * nrow(data))
train_data <- data[train_index, ]
test_data <- data[-train_index, ]# 生成新的特征
train_data$log_balance <- log(train_data$Balance + 1)
test_data$log_balance <- log(test_data$Balance + 1)# 特征选择
control <- trainControl(method="repeatedcv", number=10, repeats=3)
model <- train(CreditRisk ~ ., data=train_data, method="rpart", trControl=control)
importance <- varImp(model, scale=FALSE)
print(importance)# 训练逻辑回归模型
model_logistic <- glm(CreditRisk ~ ., data=train_data, family=binomial)
predictions_logistic <- predict(model_logistic, test_data, type="response")
pred_class_logistic <- ifelse(predictions_logistic > 0.5, 1, 0)
confusionMatrix(factor(pred_class_logistic), factor(test_data$CreditRisk))# 训练随机森林模型
model_rf <- randomForest(CreditRisk ~ ., data=train_data)
predictions_rf <- predict(model_rf, test_data)
confusionMatrix(predictions_rf, factor(test_data$CreditRisk))# 训练XGBoost模型
dtrain <- xgb.DMatrix(data = as.matrix(train_data[-ncol(train_data)]), label = train_data$CreditRisk)
dtest <- xgb.DMatrix(data = as.matrix(test_data[-ncol(test_data)]), label = test_data$CreditRisk)
params <- list(objective = "binary:logistic", eval_metric = "auc")
model_xgb <- xgb.train(params, dtrain, nrounds = 100)
predictions_xgb <- predict(model_xgb, dtest)
pred_class_xgb <- ifelse(predictions_xgb > 0.5, 1, 0)
confusionMatrix(factor(pred_class_xgb), factor(test_data$CreditRisk))# 计算ROC曲线和AUC值
roc_logistic <- roc(test_data$CreditRisk, predictions_logistic)
roc_rf <- roc(test_data$CreditRisk, as.numeric(predictions_rf))
roc_xgb <- roc(test_data$CreditRisk, predictions_xgb)# 绘制ROC曲线
plot(roc_logistic, col="blue", main="ROC曲线比较")
plot(roc_rf, col="red", add=TRUE)
plot(roc_xgb, col="green", add=TRUE)# 计算AUC值
auc_logistic <- auc(roc_logistic)
auc_rf <- auc(roc_rf)
auc_xgb <- auc(roc_xgb)
legend("bottomright", legend=c(paste("Logistic (AUC =", round(auc_logistic, 2), ")"), paste("Random Forest (AUC =", round(auc_rf, 2), ")"), paste("XGBoost (AUC =", round(auc_xgb, 2), ")")), col=c("blue", "red", "green"), lwd=2)# 模型监控
library(shiny)
ui <- fluidPage(titlePanel("模型性能监控仪表板"),mainPanel(plotOutput("aucPlot"),plotOutput("f1Plot"))
)
server <- function(input, output) {output$aucPlot <- renderPlot({plot(performance_metrics$AUC, type="l", col="blue", xlab="时间", ylab="AUC", main="AUC值变化")})output$f1Plot <- renderPlot({plot(performance_metrics$F1, type="l", col="red", xlab="时间", ylab="F1分数", main="F1分数变化")})
}
shinyApp(ui = ui, server = server)# 增量学习更新模型
library(glmnet)
new_model <- glmnet(x = as.matrix(new_data[,-ncol(new_data)]), y = new_data$CreditRisk, family = "binomial", alpha = 0.5, lambda = 0.1, intercept = TRUE)# 数据增强
library(DMwR)
balanced_data <- SMOTE(CreditRisk ~ ., data = train_data, perc.over = 200, perc.under = 200)
augmented_data <- data.frame(apply(train_data, 2, function(x) jitter(x, amount = 0.1)))# 交叉验证
control <- trainControl(method="cv", number=10)
model_cv <- train(CreditRisk ~ ., data=train_data, method="rf", trControl=control)
control_loo <- trainControl(method="LOOCV")
model_loo <- train(CreditRisk ~ ., data=train_data, method="rf", trControl=control_loo)# 正则化
model_lasso <- glmnet(x = as.matrix(train_data[,-ncol(train_data)]), y = train_data$CreditRisk, alpha = 1, family = "binomial")
model_ridge <- glmnet(x = as.matrix(train_data[,-ncol(train_data)]), y = train_data$CreditRisk, alpha = 0, family = "binomial")
model_enet <- glmnet(x = as.matrix(train_data[,-ncol(train_data)]), y = train_data$CreditRisk, alpha = 0.5, family = "binomial")# 增加训练数据
more_data <- read.csv("new_credit_data.csv")
combined_data <- rbind(train_data, more_data)
synthetic_data <- generate_synthetic_data(train_data) # 伪代码
combined_data <- rbind(train_data, synthetic_data)# 模块化设计
process_data <- function(raw_data) {cleaned_data <- raw_datareturn(cleaned_data)
}
train_model <- function(processed_data) {model <- train(CreditRisk ~ ., data=processed_data, method="rf")return(model)
}
cleaned_data <- process_data(raw_data)
model <- train_model(cleaned_data)ensemble_models <- function(models, data) {predictions <- sapply(models, predict, newdata=data)final_prediction <- apply(predictions, 1, mean)return(final_prediction)
}
models <- list(model_rf, model_xgb, model_logistic)
final_prediction <- ensemble_models(models, test_data)# 自动化数据处理
library(odbc)
library(dbplyr)
con <- dbConnect(odbc(), "CreditDB")
processed_data <- tbl(con, "raw_credit_data") %>%filter(!is.na(CreditRisk)) %>%mutate(Balance = ifelse(Balance < 0, 0, Balance)) %>%collect()# 自动化模型训练和部署
library(plumber)
train_model_api <- function() {model <- train(CreditRisk ~ ., data=processed_data, method="rf")saveRDS(model, "credit_model.rds")return("Model trained and saved successfully")
}
r <- plumb()
r$handle("POST", "/train_model", train_model_api)
r$run(port=8000)# 多模型集成
vote <- function(predictions) {final_pred <- apply(predictions, 1, function(x) names(sort(table(x), decreasing=TRUE)[1]))return(final_pred)
}
predictions <- sapply(models, predict, newdata=test_data)
final_prediction <- vote(predictions)weighted_avg <- function(predictions, weights) {final_pred <- rowSums(predictions * weights) / sum(weights)return(final_pred)
}
weights <- c(0.5, 0.3, 0.2)
final_prediction <- weighted_avg(predictions, weights)library(caretEnsemble)
models <- caretList(CreditRisk ~ ., data=train_data, trControl=trainControl(method="cv"), methodList=c("rf", "xgbTree", "glm"))
stack <- caretStack(models, method="glm")
final_prediction <- predict(stack, newdata=test_data)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/34287.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Tailwindcss之后,vxe-table表头排序箭头高亮消失的问题解决

环境 vue2.7.8 vxe-table3.5.9 tailwindcss/postcss7-compat2.2.17 postcss7.0.39 autoprefixer9.8.8 问题 vxe-table 表格表头 th 的排序箭头在开启正序或逆序排序时&#xff0c;会显示蓝色高亮来提示用户表格数据处在排序情况下。在项目开启运行了tailwindcss之后&#xff0…

数据集的未来:如何利用亮数据浏览器提升数据采集效率

目录 一、跨境电商的瓶颈1、技术门槛2、语言与文化差异3、网络稳定性4、验证码处理和自动识别5、数据安全6、法规和合规 二、跨境电商现在是一个合适的商机吗&#xff1f;三、数据集与亮数据浏览器1、市场分析2、价格监控3、产品开发4、供应链优化5、客户分析 四、亮数据浏览器…

上海计算机学会2020年3月月赛C++丙组T4连乘问题

题目描述 给定 a1​,a2​,⋯,an​&#xff0c;请计算一组乘积&#xff0c;记为P1​,P2​,⋯,Pn​&#xff0c;其中 Pi​ 的定义如下&#xff1a; 也就是说&#xff0c;Pi​ 是 a1​ 到 an​ 的连乘再除去 ai​。由于答案可能比较大&#xff0c;输出每个 Pi​ 模 10000 的余数。…

算法05 模拟算法之二维数组相关内容详解【C++实现】

大家好&#xff0c;我是bigbigli&#xff0c;前面一节我们一节讲过一维数组的模拟了&#xff0c;如果还没看的话&#xff0c;可以&#x1f449;点击此处。模拟算法还有很多内容需要讲&#xff0c;比如图像、日期相关的模拟算法&#xff0c;后续将继续更新&#xff0c;今天先来讲…

代码随想录——跳跃游戏Ⅱ(Leetcode 45)

题目链接 贪心 class Solution {public int jump(int[] nums) {if(nums.length 1){return 0;}int count 0;// 当前覆盖最远距离下标int curDistance 0;// 下一步覆盖距离最远下标int nextDistance 0;for(int i 0; i < nums.length; i){nextDistance Math.max(nums[…

快速修复mfc100u.dll丢失解决方案

相连文章&#xff1a;SecureCRT的安装破解 [详细过程2024] 有小伙伴向我反馈在打开SecureFX注册机之后显示【mfc100u.dll找不到】重装之后也没有用&#xff0c;这个是因为Microsoft Visual C的运行时组件和库出现了错误&#xff0c;直接选择重新安装就可以 出现这种情况的原因…

高性能并行计算华为云实验五:PageRank算法实验

目录 一、实验目的 二、实验说明 三、实验过程 3.1 创建PageRank源码 3.2 makefile的创建和编译 3.3 主机配置文件建立与运行监测 四、实验结果与分析 4.1 采用默认的节点数量及迭代次数进行测试 4.2 分析并行化下节点数量与耗时的变化规律 4.3 分析迭代次数与耗时的变…

MySQL——联表查询JoinON详解

Join 对比&#xff08;7种&#xff09; 代码演示&#xff1a; -- 查询参加了考试的同学&#xff08;学号&#xff0c;姓名&#xff0c;科目编号&#xff0c;分数&#xff09; SELECT * FROM student SELECT * FROM result/* 1. 分析需求&#xff1a;分析查询的字段来自哪些表&…

spring原理篇

第三方bean默认为方法名 自动配置 自动配置的原理 springboot的自动配置原理 首先是从 SpringBootApplication这个注解出发 有一个ComponentScan()默认扫描同级包及其子包 第二个注解是springbootconfiguration 声明当前类是一个配置类 第三个是核心 enableAutoConfigurati…

通过看板系统管理工作流程:强调持续交付与可视化工作的全面指南

目录 前言1. 看板系统简介1.1 看板系统的基本原理1.2 看板系统的主要特点 2. 强调持续交付的重要性2.1 持续交付的优势2.2 持续交付的实施步骤 3. 可视化工作的核心价值3.1 提高透明度和可见性3.2 促进工作流程的优化3.3 增强团队的自我管理能力 4. 看板系统的实施指南4.1 初始…

vue-cli 搭建项目,ElementUI的搭建和使用

vue-cli 官方提供的一个脚手架&#xff0c;用于快速生成一个vue的项目模板&#xff1b;预先定义 好的目录结构及基础代码&#xff0c;就好比咱们在创建Maven项目时可以选择创建一个 骨架项目&#xff0c;这个骨架项目就是脚手架&#xff0c;我们的开发更加的快速&#xff1b; …

在FlowUs息流,让知识库为你所用|如何打造个人知识库|如何打造企业知识库

&#x1f389; 在 FlowUs 的世界中&#xff0c;知识绽放出无限的可能&#xff01;&#x1f680; 在当今信息爆炸的时代&#xff0c;知识的更新换代速度极快&#xff0c;我们每天都面临着海量的信息冲击。拥有一个属于自己的知识库变得至关重要。 首先&#xff0c;打造自己的知…

【PB案例学习笔记】-24创建一个窗口图形菜单

写在前面 这是PB案例学习笔记系列文章的第24篇&#xff0c;该系列文章适合具有一定PB基础的读者。 通过一个个由浅入深的编程实战案例学习&#xff0c;提高编程技巧&#xff0c;以保证小伙伴们能应付公司的各种开发需求。 文章中设计到的源码&#xff0c;小凡都上传到了gite…

免费APP分发平台:小猪APP分发如何解决开发者的痛点

你是否曾为自己开发的APP找不到合适的分发平台而烦恼&#xff1f;你是否因为高昂的分发费用而望而却步&#xff1f;放心吧&#xff0c;你并不是一个人。很多开发者都面临同样的问题。但别担心&#xff0c;小猪APP分发来了&#xff0c;它可以帮你解决这些问题。 小猪app封装www…

条件断点在找call中的应用

以TLBB为例&#xff0c;在2024.6.24附近左右的时间段&#xff0c;游戏窗口切换时就会有两个左右的call&#xff0c;在x64dbg下断点之后切换回游戏窗口&#xff0c;很难分辨出哪个是我们需要的动作引起的call&#xff0c;因此在send函数处下条件断点&#xff1a;$breakpointcoun…

数据库课程知识点总结

数据库概述 数据库基本特点&#xff1a;数据结构化&#xff0c;数据独立性&#xff0c;数据冗余小&#xff0c;易扩充&#xff0c;统一管理和控制&#xff0c;永久存储&#xff0c;有组织&#xff0c;可共享 三级模式 模式&#xff1a;一个数据库只有一个模式&#xff0c;是对…

秋招Java后端开发冲刺——关系型数据库篇(Mysql)

本文介绍关系型数据库及其代表Mysql数据库&#xff0c;并介常见面试题目。 一、数据库概述 1. 数据库&#xff08;Database, DB&#xff09;&#xff1a;是长期储存在计算机内的、有组织的、可共享的数据集合。 2. 数据库管理系统&#xff08;Database Management System, D…

服务器数据恢复—异常断电导致RAID6阵列中磁盘出现坏扇区的数据恢复案例

服务器存储数据恢复环境&#xff1a; 一台存储中有一组由12块SAS硬盘组建的RAID6磁盘阵列&#xff0c;划分为一个卷&#xff0c;分配给几台Vmware ESXI主机做共享存储。该卷中存放了大量Windows虚拟机&#xff0c;这些虚拟机系统盘是统一大小&#xff0c;数据盘大小不确定&…

【Linux】静态库、动态库

动静态库里面包含的是源文件通过汇编阶段生成的后缀为.o的可重定位目标文件。我们在使用C语言&#xff0c;包含一个stdio.h头文件就可以使用scanf方法&#xff0c;其实都是系统调用了相应的头文件和库&#xff0c;库里面有开发者已经写好各种方法。也就是说我们在使用C语言时&a…

RabbitMQ实践——Stream队列的使用方法

大纲 什么是Stream队列创建Stream发布消息消费从第一条消息开始读取从最后一条消息开始读取从某个时间戳开始读取从某个偏移量开始读取 样例长度控制长度控制时间控制服务端筛选消息发布方设定过滤值消费方设置服务端过滤&#xff0c;且要二次过滤 工程代码参考资料 在 《Rabb…