深度学习算法informer(时序预测)(三)(Encoder)

一、EncoderLayer架构如图(不改变输入形状)

二、ConvLayer架构如图(输入形状中特征维度减半)

 三、Encoder整体

包括三部分

1. 多层EncoderLayer

2. 多层ConvLayer

3. 层归一化

代码如下

class AttentionLayer(nn.Module):def __init__(self, attention, d_model, n_heads, d_keys=None, d_values=None, mix=False):super(AttentionLayer, self).__init__()d_keys = d_keys or (d_model//n_heads)d_values = d_values or (d_model//n_heads)self.inner_attention = attentionself.query_projection = nn.Linear(d_model, d_keys * n_heads)self.key_projection = nn.Linear(d_model, d_keys * n_heads)self.value_projection = nn.Linear(d_model, d_values * n_heads)self.out_projection = nn.Linear(d_values * n_heads, d_model)self.n_heads = n_headsself.mix = mixdef forward(self, queries, keys, values, attn_mask):B, L, _ = queries.shape_, S, _ = keys.shapeH = self.n_headsqueries = self.query_projection(queries).view(B, L, H, -1)keys = self.key_projection(keys).view(B, S, H, -1)values = self.value_projection(values).view(B, S, H, -1)out, attn = self.inner_attention(queries,keys,values,attn_mask)if self.mix:out = out.transpose(2,1).contiguous()out = out.view(B, L, -1)return self.out_projection(out), attnclass ConvLayer(nn.Module):def __init__(self, c_in):super(ConvLayer, self).__init__()padding = 1 if torch.__version__>='1.5.0' else 2self.downConv = nn.Conv1d(in_channels=c_in,out_channels=c_in,kernel_size=3,padding=padding,padding_mode='circular')# 批量归一化层的作用是在训练过程中对每个批次的数据进行归一化处理# 使其均值接近于 0,方差接近于 1,从而加速模型的训练和提高模型的稳定性# 不会改变形状self.norm = nn.BatchNorm1d(c_in)self.activation = nn.ELU()self.maxPool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)def forward(self, x):x = self.downConv(x.permute(0, 2, 1))x = self.norm(x)x = self.activation(x)x = self.maxPool(x)x = x.transpose(1,2)return xclass EncoderLayer(nn.Module):def __init__(self, attention, d_model, d_ff=None, dropout=0.1, activation="relu"):super(EncoderLayer, self).__init__()d_ff = d_ff or 4*d_modelself.attention = attentionself.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)self.norm1 = nn.LayerNorm(d_model)self.norm2 = nn.LayerNorm(d_model)self.dropout = nn.Dropout(dropout)self.activation = F.relu if activation == "relu" else F.geludef forward(self, x, attn_mask=None):# x [B, L, D]# x = x + self.dropout(self.attention(#     x, x, x,#     attn_mask = attn_mask# ))new_x, attn = self.attention(x, x, x,attn_mask = attn_mask)x = x + self.dropout(new_x)y = x = self.norm1(x)y = self.dropout(self.activation(self.conv1(y.transpose(-1,1))))y = self.dropout(self.conv2(y).transpose(-1,1))return self.norm2(x+y), attnclass Encoder(nn.Module):def __init__(self, attn_layers, conv_layers=None, norm_layer=None):super(Encoder, self).__init__()self.attn_layers = nn.ModuleList(attn_layers)self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else Noneself.norm = norm_layerdef forward(self, x, attn_mask=None):# x [B, L, D]attns = []if self.conv_layers is not None:for attn_layer, conv_layer in zip(self.attn_layers, self.conv_layers):x, attn = attn_layer(x, attn_mask=attn_mask)x = conv_layer(x)attns.append(attn)x, attn = self.attn_layers[-1](x, attn_mask=attn_mask)attns.append(attn)else:for attn_layer in self.attn_layers:x, attn = attn_layer(x, attn_mask=attn_mask)attns.append(attn)if self.norm is not None:x = self.norm(x)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/31370.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

淘宝扭蛋机小程序:互联网时代下行业的发展动力

近几年,扭蛋机在潮玩市场风靡,与各类IP合作,推出各种新颖有趣的扭蛋商品,吸引了众多的IP粉丝,他们会通过扭蛋机进行抽奖,获得喜欢的商品。 目前,移动应用程序不断升级优化,“互联网…

idea中的git在clone文件提示 filename too long

一 解决版本 1.1 问题描述以及解决办法 当在Windows系统下使用Git时出现“filename too long”错误: git config --system core.longpaths true

思科ospf+rip重发布配置命令

——————————————————————————————————————————— 基础配置 R1 Router>en #进入配置模式 Router#conf #进入配置模式 Router(config)#h…

如何在 MySQL 中创建和使用事务?

目录 1. 环境准备 2. 创建事务 3. 事务执行 4. 事务撤消 5. 总结 事务是数据库区别于文件系统的重要特征之一,当我们有了事务就会让数据库始终保持一致,同时我们还能通过事务机制恢复到某个时间点,这样可以保证已提交到数据库的修改不会…

人工智能在肿瘤检测以及癌症早筛中的最新研究|顶刊速递·24-06-21

小罗碎碎念 推文主题:人工智能在癌症检测以及早筛中的最新研究进展 之前有一篇推文介绍了哈佛发表的3D病理,当时应该有不少老师/同学对于数据的获取是有些懵的,那么今天你在第一篇文章中或许能找到答案。 一直看我推送的,并且不跳…

骁龙相机启动流程分析

一、骁龙相机启动流程分析 1. 相机启动阶段关键TAG 关键字解释deliverInputEvent点击事件bindApplicationApp 冷启动 创建applicationactivityStart创建camera activityactivityResumecamera UI界面开始显示connectDevicecameraFWK 开始链接并open sensorCameraHal::openSessio…

MySQL系列-安装配置使用说明(MAC版本)

1、前言 本文将介绍MySQL的安装配置以及基本语法操作说明 环境:mac 版本:MySQL 8.0.28 之前电脑安装卸载过,后面在装的时候遇到一些问题,用了四五天才解决,主要是参考 https://blog.csdn.net/zz00008888/article/deta…

大厂晋升学习方法一:海绵学习法

早晨 30 分钟 首先,我们可以把起床的闹钟提前 30 分钟,比如原来 07:30 的闹钟可以改为 07:00。不用担心提前 30 分钟起床会影响休息质量,习惯以后,早起 30 分钟不但不会影响一天的精力,甚至可能反而让人更有精神。早起…

SAP ScreenPersonas

https://developers.sap.com/mission.screen-personas.html 跟着这个练习做一遍就了解了Personas 访问SAP提供的Personas练习系统 申请用户 登录练习系统 随便找一个可以支持Personas的程序搞起来,比如IW51 执行后等它出现这个图标就可以开始了.

js中的window和Window

示例: window.name name; console.log(window.name) // name console.log(Window.name) // Window由此可见Window和window是有区别的。 console.log(Object.prototype.toString.call(Window)); // [object Function] console.log(Object.prototype.toString.c…

中服云产品远程运维系统

中服云产品远程运维系统主要针对设备售后市场服务的管理,利用工业物联网技术,一方面面向设备生产厂商,将分散的经销商、客户、销售出去的设备统一管理;另一方面面向设备使用厂家,实现设备实时运行监控;系统…

融资融券有哪些优势和风险,融资融券利息怎么算,利率最低是?4.0

融资融券的优势 1. 提高资金利用率:获得额外的资金或股票交易,提高资金利用率,扩大投资规模。 2. 降低投资风险:通过融资融券买入多只股票分散风险,降低单一股票持仓风险。 3. 增加投资收益:提供更多的交…

视创云展为企业虚拟展厅搭建,提供哪些功能?

在当下数字化浪潮中,如何为用户创造更富生动性和真实感的展示体验,已成为企业营销策略的核心。借助视创云展的线上虚拟3D企业展厅搭建服务,利用3D空间漫游和VR技术的融合,可以为用户呈现出一个既真实又充满想象力的全景图或三维模…

Redis-数据类型-String

文章目录 1、通过客户端连接redis2、查看当前数据库的key的数量3、切换数据库3.1、切换到1数据库3.2、切换到2数据库3.3、切换到默认的数据库,0数据库 4、当前数据库没有数据5、添加键值对6、查看当前库所有key7、清空当前库8、设置存活的秒数(例如验证码…

全域外卖系统源码在哪些渠道值得推荐?

当前,全域外卖的热度持续飙升,并且隐隐有了大爆的趋势。许多创业者也因此有了进军全域外卖赛道的想法,以全域外卖系统源码在哪找为代表多个相关问题因此成为了多个创业者交流群的常客。 根据中国互联网络信息中心(CNNIC&#xff0…

小红书xs-xt解密

在进行小红书爬虫的时候,有一个关键就是解决动态密文的由来 这边用atob对X-S密文进行解密 可以看到他是一个字符串 可以发现他本来是一个json对象,因为加密需要字符串,所以将json对象转化 为了字符串 而在js中,常用JSON.stringify进行json对象到字符串的转化。 这边将JS…

FlowUs AI的使用教程和使用体验

FlowUs AI 使用教程 FlowUs AI特点使其成为提升个人和团队生产力的有力工具,无论是在学术研究、内容创作、技术开发还是日常办公中都能发挥重要作用。现在来看看如何使用FlowUs AI吧! 注册与登录:首先,确保您已经注册并登录FlowU…

小型超声波清洗机真的有用吗?深入测评四款优质精品,亮点多多

超声波洗眼镜机能够彻底清洁眼镜,去除顽固污渍和灰尘,其次是操作简便,对比传统的清洗方式用时短、效率高,避免了手动的麻烦,于是有很多眼镜使用者都选择了超声波清洗机。但由于目前超声波清洗机型号众多,如…

一次压测引发的数据库 CPU 飙升

作者:昀鹤 一次压测过程中,当数据库的 qps 和 tps 都正常时,如果 cpu 利用率异常的高,应该如何排查?希望通过这篇文章,给你一些启发... 一、业务背景 业务需要控制频道内兑换现金的数量,于是在…

Aigtek电压放大器的主要作用是什么

电压放大器是一种重要的电子设备,用于放大电压信号。它在许多电子系统和应用中发挥着关键的作用。本文将详细介绍电压放大器的主要作用和工作原理。 电压放大器是一种电子电路,它可以将输入信号的电压放大为更大的输出电压。放大器通过增加输入信号的幅度…