【Pytorch】(十三)PyTorch模型部署: TorchScript

文章目录

  • (十三)PyTorch模型部署
    • Pytorch动态图的优缺点
    • TorchScript
    • Pytorch模型转换为TorchScript
      • torch.jit.trace
      • torch.jit.script
      • trace和script的区别总结
      • script 和 trace 混合使用
      • 保存和加载模型

(十三)PyTorch模型部署

Pytorch动态图的优缺点

与Tensorflow使用静态计算图不同,PyTorch 使用的是动态计算图:

动态图允许在运行时渐进地构建计算图,使得模型设计更加灵活。开发者可以使用 Python 的控制流结构(如循环、条件语句等)来动态地定义模型的结构,从而更容易实现复杂的模型逻辑。

这种计算方式更直观,更pythonic。开发者可以更容易地理解和调试模型各个模块,快速地修改、迭代模型。

然而,与静态图相比,动态图的执行效率可能会较低。因为动态图难以进行一些计算图的优化,如运算符融合、图优化等。而且,动态图依赖于Python 环境。这些因素使得动态图不适合在低延迟要求较高的生产环境下部署。

因此,在部署Pytorch训练后的模型时,需要将动态图转换为静态图,这就要用到TorchScript。

TorchScript

TorchScript是PyTorch模型的一种静态图表示形式,支持模型的部署优化、跨平台部署以及与其他深度学习框架的集成:

  • 模型的部署优化:TorchScript 可以帮助优化 PyTorch 模型以提高性能和效率。通过将模型转换为静态图形式,TorchScript 可以应用各种优化技术,如运算符融合、图优化等,从而加速模型执行并降低内存消耗。
  • 跨平台部署:将模型转换为 TorchScript 格式可以实现跨平台部署,模型可以在没有 Python 环境的情况下运行。这对于在生产环境中部署模型到服务器、移动设备或边缘设备上非常有用。
  • 与其他框架集成:通过将 PyTorch 模型转换为 TorchScript 格式,可以更方便地与其他深度学习框架进行交互。例如,可以将TorchScript 进一步转换为 ONNX 格式,从而与 TensorFlow 等其他框架进行集成和交互操作。

Pytorch模型转换为TorchScript

torch.jit.tracetorch.jit.script 是 PyTorch 中用于模型转换为 TorchScript 格式的工具,但它们有不同的作用和使用场景。

torch.jit.trace

通过torch.jit.trace 将 没有控制流的MyCell 模块转化为TorchScript:


import torch  # This is all you need to use both PyTorch and TorchScript!torch.manual_seed(191009)  # set the seed for reproducibilityclass MyCell(torch.nn.Module):def __init__(self):super(MyCell, self).__init__()self.linear = torch.nn.Linear(4, 4)def forward(self, x, h):new_h = torch.tanh(self.linear(x) + h)return new_h, new_hmy_cell = MyCell()
x, h = torch.rand(3, 4), torch.rand(3, 4)
traced_cell = torch.jit.trace(my_cell, (x, h))
print(traced_cell)
MyCell(original_name=MyCell(linear): Linear(original_name=Linear)
)

torch.jit.trace调用了my_cell,记录了模块计算时发生的操作,并创建了一个torch.jit.ScriptModule的实例(TracedModule是其实例)traced_celltraced_cell 记录了my_cell的计算图。我们可以使用.graph属性来查看:

print(traced_cell.graph)
graph(%self.1 : __torch__.MyCell,%x : Float(3, 4, strides=[4, 1], requires_grad=0, device=cpu),%h : Float(3, 4, strides=[4, 1], requires_grad=0, device=cpu)):%linear : __torch__.torch.nn.modules.linear.Linear = prim::GetAttr[name="linear"](%self.1)%20 : Tensor = prim::CallMethod[name="forward"](%linear, %x)%11 : int = prim::Constant[value=1]() # /var/lib/workspace/beginner_source/Intro_to_TorchScript_tutorial.py:189:0%12 : Float(3, 4, strides=[4, 1], requires_grad=1, device=cpu) = aten::add(%20, %h, %11) # /var/lib/workspace/beginner_source/Intro_to_TorchScript_tutorial.py:189:0%13 : Float(3, 4, strides=[4, 1], requires_grad=1, device=cpu) = aten::tanh(%12) # /var/lib/workspace/beginner_source/Intro_to_TorchScript_tutorial.py:189:0%14 : (Float(3, 4, strides=[4, 1], requires_grad=1, device=cpu), Float(3, 4, strides=[4, 1], requires_grad=1, device=cpu)) = prim::TupleConstruct(%13, %13)return (%14)

然而,图中包含的大多数信息对我们没有用处。我们可以使用.code属性对其进行Python语法解释:

print(traced_cell.code)
def forward(self,x: Tensor,h: Tensor) -> Tuple[Tensor, Tensor]:linear = self.linear_0 = torch.tanh(torch.add((linear).forward(x, ), h))return (_0, _0)

调用traced_cell会产生与Python模块实例my_cell() 相同的结果:

print(my_cell(x, h))
print(traced_cell(x, h))
(tensor([[-0.2541,  0.2460,  0.2297,  0.1014],[-0.2329, -0.2911,  0.5641,  0.5015],[ 0.1688,  0.2252,  0.7251,  0.2530]], grad_fn=<TanhBackward0>), tensor([[-0.2541,  0.2460,  0.2297,  0.1014],[-0.2329, -0.2911,  0.5641,  0.5015],[ 0.1688,  0.2252,  0.7251,  0.2530]], grad_fn=<TanhBackward0>))
(tensor([[-0.2541,  0.2460,  0.2297,  0.1014],[-0.2329, -0.2911,  0.5641,  0.5015],[ 0.1688,  0.2252,  0.7251,  0.2530]], grad_fn=<TanhBackward0>), tensor([[-0.2541,  0.2460,  0.2297,  0.1014],[-0.2329, -0.2911,  0.5641,  0.5015],[ 0.1688,  0.2252,  0.7251,  0.2530]], grad_fn=<TanhBackward0>))

torch.jit.script

我们先尝试通过torch.jit.trace 将 带有控制流的MyCell 模块转化为TorchScript:

class MyDecisionGate(torch.nn.Module):def forward(self, x):if x.sum() > 0:return xelse:return -xclass MyCell(torch.nn.Module):def __init__(self, dg):super(MyCell, self).__init__()self.dg = dgself.linear = torch.nn.Linear(4, 4)def forward(self, x, h):new_h = torch.tanh(self.dg(self.linear(x)) + h)return new_h, new_hmy_cell = MyCell(MyDecisionGate())
traced_cell = torch.jit.trace(my_cell, (x, h))print(traced_cell.dg.code)
print(traced_cell.code)
/var/lib/workspace/beginner_source/Intro_to_TorchScript_tutorial.py:261: TracerWarning:Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!def forward(self,argument_1: Tensor) -> NoneType:return Nonedef forward(self,x: Tensor,h: Tensor) -> Tuple[Tensor, Tensor]:dg = self.dglinear = self.linear_0 = (linear).forward(x, )_1 = (dg).forward(_0, )_2 = torch.tanh(torch.add(_0, h))return (_2, _2)

可以看到,if-else分支并没有被表示出来。为什么?
trace记录代码运行发生的操作,并构造一个ScriptModule。控制流中只有一种情况被记录了下来,其他情况都被忽略了。

这就需要用到torch.jit.script了:

scripted_gate = torch.jit.script(MyDecisionGate())my_cell = MyCell(scripted_gate)
scripted_cell = torch.jit.script(my_cell)print(scripted_gate.code)
print(scripted_cell.code)
def forward(self,x: Tensor) -> Tensor:if bool(torch.gt(torch.sum(x), 0)):_0 = xelse:_0 = torch.neg(x)return _0def forward(self,x: Tensor,h: Tensor) -> Tuple[Tensor, Tensor]:dg = self.dglinear = self.linear_0 = torch.add((dg).forward((linear).forward(x, ), ), h)new_h = torch.tanh(_0)return (new_h, new_h)

可以考到,控制流也被记录了下来。
现在让我们尝试运行该程序:

# New inputs
x, h = torch.rand(3, 4), torch.rand(3, 4)
print(scripted_cell(x, h))
(tensor([[ 0.5679,  0.5762,  0.2506, -0.0734],[ 0.5228,  0.7122,  0.6985, -0.0656],[ 0.6187,  0.4487,  0.7456, -0.0238]], grad_fn=<TanhBackward0>), tensor([[ 0.5679,  0.5762,  0.2506, -0.0734],[ 0.5228,  0.7122,  0.6985, -0.0656],[ 0.6187,  0.4487,  0.7456, -0.0238]], grad_fn=<TanhBackward0>))

trace和script的区别总结

  • torch.jit.tracetorch.jit.trace 用于将一个具体的输入示例追踪(trace)模型的一次计算过程,从而生成一个 TorchScript 模型。对于动态控制流(如条件语句),它只会记录每个分支中的一种情况。因此,它不适用于无固定形状输入、具有动态控制流的模型。

  • torch.jit.scripttorch.jit.script 用于将整个 PyTorch 模型转换为 TorchScript 模型,包括模型的所有逻辑和控制流。script适用于无固定形状输入、具有动态控制流的模型 。但是,它可能会把保存一些多余的代码, 产生额外的性能开销。

因此,可以将两者混合使用,扬长避短。

script 和 trace 混合使用

torch.jit.tracetorch.jit.script 可以混合使用: 复杂模型中静态部分用torch.jit.trace进行转换, 动态部分用torch.jit.script 进行转换,以发挥各自的优势。以下是两个可能的情况:

  • torch.jit.script内联traced模块的代码,
class MyRNNLoop(torch.nn.Module):def __init__(self):super(MyRNNLoop, self).__init__()self.cell = torch.jit.trace(MyCell(scripted_gate), (x, h))def forward(self, xs):h, y = torch.zeros(3, 4), torch.zeros(3, 4)for i in range(xs.size(0)):y, h = self.cell(xs[i], h)return y, hrnn_loop = torch.jit.script(MyRNNLoop())
print(rnn_loop.code)
def forward(self,xs: Tensor) -> Tuple[Tensor, Tensor]:h = torch.zeros([3, 4])y = torch.zeros([3, 4])y0 = yh0 = hfor i in range(torch.size(xs, 0)):cell = self.cell_0 = (cell).forward(torch.select(xs, 0, i), h0, )y1, h1, = _0y0, h0 = y1, h1return (y0, h0)
  • torch.jit.trace内联scripted模块的代码,
class WrapRNN(torch.nn.Module):def __init__(self):super(WrapRNN, self).__init__()self.loop = torch.jit.script(MyRNNLoop())def forward(self, xs):y, h = self.loop(xs)return torch.relu(y)traced = torch.jit.trace(WrapRNN(), (torch.rand(10, 3, 4)))
print(traced.code)
def forward(self,xs: Tensor) -> Tensor:loop = self.loop_0, y, = (loop).forward(xs, )return torch.relu(y)

保存和加载模型

  • traced.save : 保存TorchScript

  • torch.jit.load : 加载TorchScript

traced.save('wrapped_rnn.pt')loaded = torch.jit.load('wrapped_rnn.pt')print(loaded)
print(loaded.code)
RecursiveScriptModule(original_name=WrapRNN(loop): RecursiveScriptModule(original_name=MyRNNLoop(cell): RecursiveScriptModule(original_name=MyCell(dg): RecursiveScriptModule(original_name=MyDecisionGate)(linear): RecursiveScriptModule(original_name=Linear)))
)
def forward(self,xs: Tensor) -> Tensor:loop = self.loop_0, y, = (loop).forward(xs, )return torch.relu(y)

参考:
https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/2979.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

科学高效备考AMC8和AMC10竞赛,吃透2000-2024年1850道真题和解析

如何科学、有效地备考AMC8、AMC10美国数学竞赛&#xff1f;多做真题&#xff0c;吃透真题是科学有效的方法之一&#xff0c;通过做真题&#xff0c;可以帮助孩子找到真实竞赛的感觉&#xff0c;而且更加贴近比赛的内容&#xff0c;可以通过真题查漏补缺&#xff0c;更有针对性的…

jni 写日志

jni 写日志&#xff0c;每隔一分钟写一个日志文件 // 全局变量用于存储日志文件的日期和路径 std::string currentLogFile;// 获取当前日期时间的函数 std::string getCurrentDateTime() {time_t now time(0);struct tm *timeinfo localtime(&now);char buffer[80];strf…

Leetcode30-最小展台数量(66)

1、题目 力扣嘉年华将举办一系列展览活动&#xff0c;后勤部将负责为每场展览提供所需要的展台。 已知后勤部得到了一份需求清单&#xff0c;记录了近期展览所需要的展台类型&#xff0c; demand[i][j] 表示第 i 天展览时第 j 个展台的类型。 在满足每一天展台需求的基础上&am…

成功解决ImportError: cannot import name ‘builder‘ from ‘google.protobuf.internal

成功解决ImportError: cannot import name builder from google.protobuf.internal 目录 解决问题 解决思路 解决方法 解决问题 ImportError: cannot import name builder from google.protobuf.internal 解决思路 导入错误:无法从“google.protobuf.internal”导入名称“…

在React函数组件中使用错误边界和errorElement进行错误处理

在React 18中,函数组件可以使用两种方式来处理错误: 使用 ErrorBoundary ErrorBoundary 是一种基于类的组件,可以捕获其子组件树中的任何 JavaScript 错误,并记录这些错误、渲染备用 UI 而不是冻结的组件树。 在函数组件中使用 ErrorBoundary,需要先创建一个基于类的 ErrorB…

三高架构是什么

三高架构&#xff0c;也称为三高模型&#xff0c;是指高并发、高可用、高性能的系统架构模型。它是在互联网时代应运而生的一种新型的软件架构&#xff0c;主要用于解决互联网系统架构中需要面对的关键问题。 高并发&#xff1a;指系统能够处理大量并发请求的能力。在高并发场…

课时105:正则表达式_进阶知识_扩展符号

1.1.1 扩展符号 学习目标 这一节&#xff0c;我们从 基础知识、简单实践、小结 三个方面来学习 基础知识 简介 字母模式匹配[:alnum:] 字母和数字[:alpha:] 代表任何英文大小写字符&#xff0c;亦即 A-Z, a-z[:lower:] 小写字母,示例:[[:lower:]],相当于[a-z][:upper:] 大…

VS使用技巧

VS使用技巧 1、展开和缩进代码2、代码注释和取消注释 1、展开和缩进代码 缩进&#xff1a;ctrlmo 展开&#xff1a;ctrlml 2、代码注释和取消注释 注释&#xff1a;ctrlkc 取消注释&#xff1a;ctrlku

网络通信安全

一、网络通信安全基础 TCP/IP协议简介 TCP/IP体系结构、以太网、Internet地址、端口 TCP/IP协议简介如下&#xff1a;&#xff08;from文心一言&#xff09; TCP/IP&#xff08;Transmission Control Protocol/Internet Protocol&#xff0c;传输控制协议/网际协议&#xff0…

用友NC Cloud importhttpscer接口任意文件上传漏洞

声明 本文仅用于技术交流&#xff0c;请勿用于非法用途 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;文章作者不为此承担任何责任。 一、漏洞描述 用友NC Cloud的importhttpscer接口如果存在任意文件上传…

搭建最新tensorflow 与pytorch环境

1、安装 Anaconda: 如果您尚未安装 Anaconda&#xff0c;首先访问 https://www.anaconda.com/products/distribution/ 下载适用于您操作系统的最新版本。按照官方指南完成安装过程。 2、设置 Conda 源 方法一&#xff1a;命令行配置 临时使用&#xff1a; 如果您只想临时为…

开源文本嵌入模型M3E

进入正文前&#xff0c;先扯点题外话 这两天遇到一个棘手的问题&#xff0c;在用 docker pull 拉取镜像时&#xff0c;会报错&#xff1a; x509: certificate has expired or is not yet valid 具体是下面&#x1f447;这样的 rootDS918:/volume2/docker/xiaoya# docker pul…

恒峰智慧科技—森林守护者:森林消防泵如何助力灭火?

在茂密的森林中&#xff0c;一场突如其来的火灾可能带来无法估量的破坏。幸运的是&#xff0c;森林消防泵的出现&#xff0c;帮助我们对抗这些威胁。本文将深入探讨森林消防泵如何在灭火工作中发挥重要作用。 一、森林消防泵的功能和重要性&#xff1a; 首先&#xff0c;我们需…

探索人工智能的边界:GPT 4.0与文心一言 4.0免费使用体验全揭秘!

探索人工智能的边界&#xff1a;GPT与文心一言免费试用体验全揭秘&#xff01; 前言免费使用文心一言4.0的方法官方入口进入存在的问题免费使用文心一言4.0的方法 免费使用GPT4.0的方法官方入口进入存在的问题免费使用GPT4.0的方法 前言 未来已来&#xff0c;人工智能已经可以…

Hive安装与配置实战指南

Hive安装与配置实战指南 在大数据领域中&#xff0c;Hive以其类SQL的查询语言HQL、可扩展的数据仓库能力和对Hadoop生态系统的良好集成&#xff0c;成为了数据分析和处理的重要工具。本文将指导您完成Hive的安装与配置&#xff0c;帮助您快速搭建起自己的Hive环境。 一、环境…

FreeSWITCH rtp 统计

现在能想到的是几个办法&#xff1a; 1. cdr 增加下面元素&#xff1a; rtp_audio_in_raw_bytes rtp_audio_in_media_bytes rtp_audio_in_packet_count rtp_audio_in_media_packet_count rtp_audio_in_skip_packet_count rtp_audio_in_jb_packet_count rtp_audio_in_dtmf_pac…

06.2_c/c++开源库boost_coroutine2 协程库

1.安装与说明 安装 sudo apt install libboost-coroutine1.71-dev 编译链接 libboost-coroutine不支持.pc格式查看, 支持.cmake导入 cat /usr/lib/x86_64-linux-gnu/cmake/boost_coroutine-1.71.0/boost_coroutine-config.cmake cat /usr/lib/x86_64-linux-gnu/cmake/boost…

mac 桌面不能右键 文件也不见了 但在finder的桌面上有

mac 桌面不能右键 文件也不见了 但在finder的桌面上有 出现该现象&#xff0c;可能是因为安装了带有隐藏桌面文件功能的软件&#xff0c;无意中操作引起的。可以利用终端轻松解决&#xff1a; 1、在Launchpad中找到终端并打开&#xff1a; 2、粘贴如下代码&#xff0c;回车即…

在Docker中运行Jenkins容器:从入门到实践

Jenkins作为一个流行的持续集成和持续交付(CI/CD)工具&#xff0c;其强大的功能和广泛的插件支持使其成为自动化软件开发流程的首选。结合Docker容器化技术&#xff0c;可以轻松地在任何支持Docker的平台上部署和运行Jenkins&#xff0c;实现环境一致性、快速部署和易于管理的C…

Matlab|基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理

1 主要内容 该程序复现《基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理》模型&#xff0c;建立运营商和多虚拟电厂的一主多从博弈模型&#xff0c;研究运营商动态定价行为和虚拟电厂能量管理模型&#xff0c;模型为双层&#xff0c;首先下层模型中&#xff0c;构建…