优化查询性能:DolphinDB 时间类型数据比较规则详解

在数据库中,时间是一种常见的数据类型。在处理时间数据时,比较操作是非常常见的需求。然而,在不同的场景下,对时间类型数据进行比较时应用的规则不同。本文将从 DolphinDB 支持的时间类型开始,由浅入深分别介绍时间类型数据在不同场景下的比较规则。涵盖以下场景:

  • 时间类型的转换规则
  • 时间类型的比较规则
  • 时间类型的分区剪枝规则

1. 时间类型介绍

DolphinDB 支持的时间类型包括:TIME, MINUTE, SECOND, DATE, MONTH, DATEHOUR, DATETIME, TIMESTAMP, NANOTIME, NANOTIMESTAMP。以上数据类型可以按照包含的时间信息分成:

  • 日期型:仅包含日期信息,包括 DATE, MONTH
  • 时间型:仅包含时间信息,包括 MINUTE, SECOND, TIME, NANOTIME
  • 日期时间型:同时包含日期和时间信息,包括 DATEHOUR, DATETIME, TIMESTAMP, NANOTIMESTAMP

以下是每个时间类型格式说明和例子:

DolphinDB 的时间类型不包含时区信息,由用户来决定时间对下的时区。通过 localtime、 gmtime、convertT 函数可以转换时区信息,通过todaynow函数可以获取当前的系统时间。

获取当前的日期,可以使用today函数,函数会返回一个 DATE 类型的数据,表示当前的日期:

today()  // 2024.06.03

获取当前的时间,可以使用now函数,默认情况下,该函数返回的是 TIMESTAMP 类型,精确到毫秒;也可以指定参数nanoSecond=true,返回 NANOTIMESTAMP 类型,精确到纳秒。

now()  // 2024.06.03T09:29:38.390
now(true)  // 2024.06.03T09:31:17.318298137

2. 显式的时间类型转换

在 DolphinDB 中,可以使用数据类型转换函数或者cast函数进行数据类型转换。时间类型的转换规则可以总结成下表(横轴为目标数据类型,纵轴为源数据类型,√表示支持转换,x表示不支持转换。)。

日期型日期时间型时间型
日期型×
日期时间型
时间型××

时间类型的转换规则可概括为:

(1)相同分类中的时间类型可以相互转换。

同为日期型的 DATE 和 MONTH 可以互相转换;

date(2012.01M)   // 2012.01.01
month(2012.01.02)  // 2012.01M

同为时间型的 MINUTE、SECOND、TIME、NANOTIME 可以互相转换;

minute(23:30:00)  // 23:30m
minute(23:30:00.000)  // 23:30m
minute(23:30:00.000000000)  // 23:30m
second(23:30m)  // 23:30:00
second(23:30:00.001)  // 23:30:00
second(23:30:00.000000001)  // 23:30:00
time(23:31m)  // 23:31:00.000
time(23:30:01)  // 23:30:01.000
time(23:30:01.000000001)  // 23:30:01.000
nanotime(23:30m)  // 23:30:00.000000000
nanotime(23:30:31)  // 23:30:31.000000000
nanotime(23:30:31.001)  //23:30:31.001000000

同为日期时间型的 DATEHOUR、DATETIME、TIMESTAMP、NANOTIMESTAMP 可以互相转换。

datehour(2020.01.01 13:30:01)  // 2020.01.01T13
datehour(2020.01.01T13:30:01.001)  //  2020.01.01T13
datehour(2020.01.01T13:30:01.001002003)  // 2020.01.01T13
datetime(datehour(2020.01.01 13:00:01))  // 2020.01.01T13:00:00
datetime(2020.01.01T13:30:01.001)  // 2020.01.01T13:30:01
datetime(2020.01.01T13:30:01.001002003)  //  2020.01.01T13:30:01
timestamp(datehour(2020.01.01 13:00:01))  //  2020.01.01T13:00:00.000
timestamp(2020.01.01 13:00:01)  // 2020.01.01T13:00:01.000
timestamp(2020.01.01T13:30:01.001002003)  // 2020.01.01T13:30:01.001
nanotimestamp(datehour(2020.01.01 13:00:01))  //  2020.01.01T13:00:00.000000000
nanotimestamp(2020.01.01T13:30:01)  //  2020.01.01T13:30:01.000000000
nanotimestamp(2020.01.01T13:30:01.001)  // 2020.01.01T13:30:01.001000000

(2)日期型和日期时间型可以相互转换。

日期型转换为日期时间型,会自动补充时间为0点的信息。

datehour(2023.01.02)  // 2023.01.02T00
datetime(2023.01.02)  // 2023.01.02T00:00:00
timestamp(2023.01.02)  // 2023.01.02T00:00:00.000
nanotimestamp(2023.01.02)  // 2023.01.02T00:00:00.000000000
datehour(2023.01M)  // 2023.01.01T00
datetime(2023.01M)  // 2023.01.01T00:00:00
timestamp(2023.01M)  //  2023.01.01T00:00:00.000
nanotimestamp(2023.01M)  // 2023.01.01T00:00:00.000000000

日期时间型转换为日期型,会舍弃时间信息。

date(datehour(2020.01.01 13:00:01)) // 2020.01.01
date(2020.01.01 13:00:01)  // 2020.01.01
date(2020.01.01 13:00:01.001)  // 2020.01.01
date(2020.01.01 13:00:01.001002003)  // 2020.01.01
month(datehour(2020.01.01 13:00:01))  // 2020.01M
month(2020.01.01 13:00:01)  // 2020.01M
month(2020.01.01 13:00:01.001)  // 2020.01M
month(2020.01.01 13:00:01.001002003)  // 2020.01M

(3)日期时间型可以转换为时间型,但时间型不能转换为日期时间型。

日期时间型转换为时间型,会舍弃日期信息;

time(2020.01.01 13:00:01.001002003)  // 13:00:01.001
minute(2020.01.01 13:00:01)  // 13:00m

时间型转换为日期时间型,会抛出异常。

datetime(13:00:01)  // The function datetime does not support second data

(4)日期型和时间型不能相互转换。

month(13:00:01)  // The function month does not support second data
minute(2020.01.01)  // The function minute does not support date data

3. 常规的时间类型比较

在 DolphinDB 中,常规的时间类型比较通常用于数据量比较小的内存表和流表中,或者单纯的只比较两个时间的大小的向量中,例如:对流数据引擎得到的结果根据需要过滤相应时间段的数据。不同时间类型之间可以使用比较运算符(>, <, >=, <=, ==, !=),in 和 between 进行比较。

使用比较运算符对不同时间类型进行比较时,系统会按照第2章中的转换规则,尝试将时间粒度较粗的类型转换成时间粒度较细的类型,如果能够转换,就作比较;如果不能够转换,则抛出异常。例如,表达式2023.01.04T13:30:10.001 > 2023.01.04 执行时,会将2023.01.04转换成2023.01.04T00:00:00.000再进行比较,因此返回结果是true。

2023.01.04T13:30:10.001 > 2023.01.04   // true
2011.01.01T13:00:00 > 2011.01.02   // false
2023.01.04T13:30:10.001 == 2023.01.04   // false
2023.01.04 == 2023.01.04T00:00:00.000  //  true

需要注意的是,

  • MONTH 类型的数据比较特殊,虽然它可以和日期时间型以及同为日期型的 DATE 类型相互转换,但是它们之间不能进行比较。MONTH 只能和MONTH 类型进行比较。
  • 日期时间型虽然可以转换为时间型,但是它们之间不能比较。
  • 关系运算符 between 和其他比较运算符不同,只有运算符的左右两边的类型一致时,才可以比较。
2023.01.04T13:30:10.001 between 2023.01.04T13:30:10.003:2023.01.04T13:30:10.004   // false

运算符的左右两边的类型不一致时,会报错Temporal data comparison should have the same data type.

 2023.01.04 between 2023.01.04T13:30:10.003:2023.01.04T13:30:10.004
//  between(X, Y). Temporal data comparison should have the same data type.'

4. 时间类型的分区剪枝

在 DolphinDB 的应用实践中,时序数据的时间戳通常会作为分布式数据库的分区列,按照值或者范围分片存储。当查询语句的过滤条件包含分区列时,系统会进行分区剪枝,以减少扫描分区的数量,提升查询性能。了解时间类型的分区剪枝规则能够帮助我们写出高效的 SQL 语句。

在实际使用中,通常会对时间分区列直接进行过滤查询,或者对时间分区列进行显式类型转换后再进行过滤。这两种情况,DolphinDB 的分区剪枝规则略有不同。下面将分开阐述。

下文介绍中将频繁出现三个名称,在此先介绍它们的概念:

  • 分区方案类型database 函数的 partitionScheme 参数指定的数据类型。在这个例子中,分区方案的类型是 [2022.09.01,2022.09.02, 2022.09.03] 的类型,即 DATE 类型:
dbName = "dfs://time_comparison"
if(existsDatabase(dbName))dropDatabase(dbName)
db = database(dbName, VALUE, [2022.09.01,2022.09.02, 2022.09.03])
  • 分区列类型createPartitionedTable 函数的 partitionColumns 指定的列类型。在这个例子中,分区列的类型是表ttime列的类型,即 DATETIME 类型:
n = 6
t = table(n:n,[`time,`value],[DATETIME,DOUBLE])
t[`time] = [2022.09.01T00:00:00, 2022.09.01T12:00:00, 2022.09.02T00:00:00, 2022.09.02T12:00:00, 2022.09.03T00:00:00, 2022.09.03T12:00:00]
t[`value] = 1..6
pt = db.createPartitionedTable(t, `pt, `time).append!(t)
  • 过滤比较中的时间对象。在这个例子中,分布式表的分区列time和数据2022.09.01进行比较,2022.09.01则是过滤比较中的时间对象,是 DATE 类型的数据:
select * from pt where time == 2022.09.01
time                   value
-----------------------------------
2022.09.01T00:00:00    1.00000000
2022.09.01T12:00:00    2.00000000

4.1 对分区列直接过滤

在分布式查询中,当我们使用运算符 <, <=, =, ==, >, >=, in, between 对时间分区列和其他时间类型的数据进行比较时, 比较的规则和在内存表中相同,且系统会进行分区剪枝。但要注意,当分区方案是 DATEHOUR 和 DATETIME 类型时,不支持创建分区表。

下例中,时间列的类型为 DATETIME,按照该列对数据按天进行 VALUE 分区。

dbName = "dfs://time_comparison"
if(existsDatabase(dbName))dropDatabase(dbName)db = database(dbName, VALUE, [2022.09.01,2022.09.02, 2022.09.03])
n = 6
t = table(n:n,[`time,`value],[DATETIME,DOUBLE])
t[`time] = [2022.09.01T00:00:00, 2022.09.01T12:00:00, 2022.09.02T00:00:00, 2022.09.02T12:00:00, 2022.09.03T00:00:00, 2022.09.03T12:00:00]
t[`value] = 1..6
pt = db.createPartitionedTable(t, `pt, `time).append!(t)

想要查询2022.09.01这一天的数据,可以直接用分区列和2022.09.01进行比较。即使2022.09.01的数据类型和分区列的数据类型不同,依然能够进行分区剪枝,只需扫描2022.09.01这个分区的数据即可。我们可以使用sqlDS 来查看分布式查询拆分子查询的情况。

sqlDS(<select * from pt where time == 2022.09.01>)

想要查询2022.09.01T00:00:00.000这一时刻的数据,也可以直接用分区列和该时刻进行比较,即使两者数据类型不同,依然能进行分区剪枝,只需扫描2022.09.01这个分区的数据即可。

sqlDS(<select * from pt where time == 2022.09.01T00:00:00.000>)

4.2 对分区列进行显式类型转换后过滤

对于显式类型转换的过滤条件中,形如convert_func(col) <operator> constant的表达式,其中convert_func是 date、month 等时间类型转换函数, col是分区列,operator是运算符,constant是比较的值,以下情况可以进行分区剪枝。

4.2.1 使用比较运算符

<operator>为比较运算符(<, <=, =, ==, >, >=)时,convert_func 返回的数据类型的精度小于等于constant 的精度,并且convert_func 返回的数据类型的精度小于等于分区列的精度,可以进行分区剪枝。

时间精度由低到高的排序为:MONTH < DATE < DATEHOUR < DATETIME < TIMESTAMP < NANOTIMESTAMP

这里以 VALUE 分区为例,分区方案的类型为 DATE,按照 DATE 进行分区创建分布式表:

dbName = "dfs://time_comparison"
if(existsDatabase(dbName))dropDatabase(dbName)db = database(dbName, VALUE, [2022.09.01,2022.09.30,2022.10.01,2022.10.02,2022.10.31,2022.11.01,2022.11.02,2022.12.31,2023.01.01])
n = 10
t = table(n:n,[`time,`value],[DATE,DOUBLE])
t[`time] = take([2022.09.01,2022.09.30,2022.10.01,2022.10.02,2022.10.31,2022.11.01,2022.11.02,2022.12.31,2023.01.01],n)
t[`value] = rand(100.0,n)
pt = db.createPartitionedTable(t, `pt, `time).append!(t)

想要查询大于某个月的数据时,如果直接用分区列和 MONTH 类型的数据比较,是不支持的;这个时候可以通过month函数,将分区列的类型转换为 MONTH 类型来进行比较。

select * from pt where month(time) > 2022.10M
time          value
------------------------
2022.11.01  15.00570112
2022.11.02  66.54577804
2022.12.31  48.09958597
2023.01.01  50.57664175

因为运算符左右的类型一致,且 MONTH 类型的精度低于分区列 DATE 类型,系统会将小于2022.11M的分区都"剪枝"。

想要查询等于某一时刻的数据时,可以对分区列使用timestamp函数,和 TIMESTAMP 类型的数据进行比较,比如:

select * from pt where timestamp(time) = 2022.09.30T00:00:00.000
time          value
------------------------
2022.09.30  19.33508650

但这个时候由于转换函数的类型 TIMESTAMP 的精度高于分区列 DATE的精度,不满足分区剪枝的条件,虽然可以进行比较,但是不能进行分区剪枝。因此在这种情况下,推荐对分区列直接进行过滤的方式进行比较,效率会更高。

4.2.2 使用 between

<operator>为between时,convert_func返回的数据类型必须与constant相同,才能进行分区剪枝。

想要查询在某一连续的月的数据,直接将分区列和 MONTH 类型的数据进行比较,是不支持的:

select * from pt where time between month(2022.10M:2022.11M)
// between(X, Y). Temporal data comparison should have the same data type.'

可以对分区列使用month函数,和 MONTH 类型的数据进行比较:

select * from pt where month(time) between month(2022.10M:2022.11M)
time          value
------------------------
2022.10.01  24.45175347
2022.10.02  86.05015869
2022.10.31  78.28769609
2022.11.01  15.00570112
2022.11.02  66.54577804

运算符 between 的左右两边的类型一致,且 MONTH 类型的精度低于分区列 DATE 的精度,满足分区剪枝的条件,系统会从2022.10.01, 2022.10.02, 2022.10.31, 2022.11.01, 2022.11.02 这5个分区中过滤数据,其他的分区会被”剪枝“。

4.2.3 使用 in

<operator>为 in 时,convert_func 返回的数据类型必须与constant相同,并且constant列表中的连续片段的数量小于16,才能进行分区剪枝。

假设列表为 [2020.01.02, 2020.01.03, 2020.01.04, 2020.01.06, 2020.01.07, 2020.01.12],那么它包含3个连续片段 2020.01.02..2020.01.04,2020.01.06..2020.01.07,2020.01.12。

想要查询在某一不连续的月的数据,可以使用 month 函数,和 MONTH 类型的数据进行比较:

select * from pt where month(time) in [2022.09M, 2022.11M]
time          value
------------------------
2022.09.01  51.37807030
2022.09.01  50.86722047
2022.09.30  13.91816022
2022.11.01  76.58300183
2022.11.02  74.23354792

运算符 in 的左右两边类型一致,且 MONTH 类型的精度低于分区列 DATE 的精度,[2022.09M, 2022.11M] 是一个不连续的片段,但是片段的数据小于16,满足分区剪枝的条件,系统会从2022.09.01, 2022.09.30, 2022.11.01, 2022.11.02 这4个分区中过滤数据,其他的分区会被”剪枝“。

想要查询在某一连续时刻的数据,可以使用timestamp函数,和 TIMESTAMP 类型的数据进行比较:

select * from pt where timestamp(time) in timestamp(2022.10.31..2022.11.01)
time          value
------------------------
2022.10.31  78.28769609
2022.11.01  15.00570112

虽然运算符 in 的左右两边的类型一致,但因为 TIMESTAMP 的精度高于分区列 DATE 的精度,因此不能进行分区剪枝。

5. 小结

对时间类型进行比较的规则可以分为两类:涉及分区剪枝时的比较和不涉及分区剪枝时的比较。通常时间类型向量比较,内存表查询和分布式表查询中过滤条件为非分区列时的时间类型比较均不涉及分区剪枝。而分布式表查询中过滤条件为分区列时,时间类型比较会涉及分区剪枝。​在实际使用过程中,推荐使用支持分区剪枝的 where 条件来提升查询的效率。尤其针对数据量非常大的分区表进行查询时,分区剪枝能够节省大量时间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/28080.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

47.PyCharm P版突然无法启动

目录 1.启动cmd.exe&#xff0c;进到pycharm\bin目录&#xff0c;启动.\pycharm.bat&#xff0c;如果正常&#xff0c;就像下面这个样子&#xff0c;如果不正常&#xff0c;则会报错&#xff0c; 2.用记事本打开pycharm.bat文件&#xff0c;加上以下代码后 今晨&#xff0c;无…

《C++ Primer》导学系列:第 3 章 - 字符串、向量和数组

3.1 命名空间的使用 概述 命名空间是C中的一种机制&#xff0c;用于组织代码并避免名字冲突。通过使用命名空间&#xff0c;可以将全局作用域中的标识符组织到逻辑分组中&#xff0c;从而提高代码的可读性和可维护性。命名空间在大型项目中尤为重要&#xff0c;因为它们可以防…

关于C#导出Word时报错“{00020970-0000-0000-C000-000000000046}加载类型库/DLL 时出错”的解决办法

之前还运行正常的程序&#xff0c;突然发现导出Word的时候会报错&#xff0c;报错内容&#xff1a; System.InvalidCastException:“Unable to cast COM object of type ‘Microsoft.Office.Interop.Word.ApplicationClass’ to interface type ‘Microsoft.Office.Interop.Wor…

ubuntu18.04 配置 mid360并测试fast_lio

1.在买到Mid360之后&#xff0c;我们可以看到mid360延伸出来了三组线。 第一组线是电源线&#xff0c;包含了红色线正极&#xff0c;和黑色线负极。一般可以用来接9-27v的电源&#xff0c;推荐接12v的电源转换器&#xff0c;或者接14.4v的电源转换器。 第二组线是信号线&#x…

CSS概述

CSS是一种样式表语言&#xff0c;用于为HTML文档控制外观&#xff0c;定义布局。例如&#xff0c; CSS涉及字体、颜色、边距、高度、宽度、背景图像、高级定位等方面 。 ● 可将页面的内容与表现形式分离&#xff0c;页面内容存放在HTML文档中&#xff0c;而用 于定义表现形式…

本学期嵌入式期末考试的综合项目,我是这么出题的

时间过得真快&#xff0c;临近期末&#xff0c;又到了老师出卷的时候。作为《嵌入式开发及应用》这门课的主讲教师&#xff0c;今年给学生出的题目有一点点难度&#xff0c;最后的综合项目要求如下所示&#xff0c;各位学生朋友和教师同行可以评论一下难度如何&#xff0c;单片…

【推荐算法】召回模型总结

文章目录 1、传统召回算法2、向量化召回统一建模架构2.1、如何定义正样本2.2、重点关注负样本2.3、召回生成Embedding&#xff1a;要求用户、物料解耦2.4、如何定义优化目标2.4.1、Softmax Loss、NCE Loss、NEG Loss2.4.2、Sampled Softmax Loss2.4.3、Pairwise Loss 3、Word2V…

量化交易入门——盘口

今天接着上一期讲解开盘定势的种类&#xff0c;在讲之前&#xff0c;科普一下“盘口五档”的成交知识。 每个炒股软件上&#xff0c;都会有某只个股的成交信息&#xff0c;在其中会出现一个五档的行情列表&#xff0c;里面列出了买家和卖家各五个价格及其对应的数量。这五档价…

Docker 基础使用(5)Compose

文章目录 Docker Compose 基础认识Docker Compose 基础语法Docker Compose 基础指令Docker Compose 使用实例 Docker 基础使用(0&#xff09;基础认识 Docker 基础使用(1&#xff09;使用流程概览 Docker 基础使用(2&#xff09;镜像与容器 Docker 基础使用(3&#xff09;存储卷…

【教程】使用立创EDA打开JSON格式的PCB及原理图

这里写目录标题 一、将PCB和原理图放同一文件夹二、打开嘉立创EDA并导入.zip文件三、选择.zip文件并选择 “导入文件并提取库” 一、将PCB和原理图放同一文件夹 并打包成.zip文件 二、打开嘉立创EDA并导入.zip文件 嘉立创 我这里用的网页端&#xff0c;客户端下载页面拉到…

FreeRTOS简单内核实现6 优先级

文章目录 0、思考与回答0.1、思考一 1、就绪链表1.1、创建1.2、初始化1.3、添加任务1.3.1、prvAddNewTaskToReadyList( )1.3.2、prvAddTaskToReadyList( ) 1.4、寻找最高优先级任务 2、修改内核程序2.1、TCB2.2、xTaskCreateStatic( )2.3、prvInitialiseNewTask( )2.4、vTaskSt…

[Qt的学习日常]--常用控件1

前言 作者&#xff1a;小蜗牛向前冲 名言&#xff1a;我可以接受失败&#xff0c;但我不能接受放弃 如果觉的博主的文章还不错的话&#xff0c;还请点赞&#xff0c;收藏&#xff0c;关注&#x1f440;支持博主。如果发现有问题的地方欢迎❀大家在评论区指正 目录 一、什么是控…

运算符与表达式

运算符和表达式是C语言编程的基础构建块&#xff0c;它们共同构成了C语言程序的核心逻辑和计算。理解和掌握运算符和表达式的相关知识&#xff0c;对于编写高效、易读的C语言代码至关重要。 一、运算符概述 运算符是C语言中用于执行各种操作的符号&#xff0c;它们可以对变量、…

python错题(1)

字典中min&#xff0c;max最后比较的是键&#xff0c;输出的是键

解决Pycharm远程连接WSL2的python解释器,使用调试模式时显示超时的问题

环境 windows 11wsl2ubuntu20.04pycharm2023.3.3 问题 Pycharm远程连接WSL2的python解释器&#xff0c;使用调试模式时显示超时 分析 TCP连接错误。 解决方法 windows高级防火墙设置->入站规则->找到pycharm2023.3.3的TCP连接规则->双击允许连接 步骤截图见下…

C++ 53 之 继承中同名成员处理

#include <iostream> #include <string> using namespace std;class Base06{ public:int m_a;Base06(){this->m_a 10;}void fun(){cout << "父类的fun函数" << endl;}void fun(int a){cout << "父类的fun(int a)函数" &…

远程连接服务器的工具?

远程连接服务器工具是现代工作环境中不可或缺的工具之一。它允许用户通过网络远程访问和控制远程服务器&#xff0c;为用户提供了更加便捷和高效的工作方式。无论是远程办公、远程维护还是云计算&#xff0c;远程连接服务器工具都发挥着重要的作用。 在众多远程连接服务器工具…

c++20 规范, vs2019 , 头文件 <mutex> ,注释以及几个探讨

&#xff08;1 探讨一&#xff09; mutex 这个名称的来源是 mutual exclusion &#xff1a;互相排斥。 mutex 与 recursive_mutex 的数据成员的定义如下&#xff1a; 测试如下&#xff1a; 运行以下&#xff1a; 以及&#xff1a; &#xff08;2 探讨二&#xff09; recursive_…

GitHub Copilot 登录账号激活,已经在IntellJ IDEA使用

GitHub Copilot 想必大家都是熟悉的&#xff0c;一款AI代码辅助神器&#xff0c;相信对编程界的诸位并不陌生。 今日特此分享一项便捷的工具&#xff0c;助您轻松激活GitHub Copilot&#xff0c;尽享智能编码之便利&#xff01; GitHub Copilot 是由 GitHub 和 OpenAI 共同开…

python基础 002 - 2 常用数据类型

python的常用数据类型 int , 整型 1,2,3float ,小数&#xff0c;浮点类型1.2bool , boolean 布尔&#xff0c;真假。判断命题。True Flasestr &#xff0c;字符串 list , 列表 a []tuple, 元组 a ()dict , dictionary, 字典 a {}set , 集合 a {} 1 查看数据类型 typ…