算法day26

第一题

429. N 叉树的层序遍历

本题的要求我们可以通过队列来辅助完成层序遍历;

如下图的n叉树:

步骤一:

        我们定义一个队列,先进行根节点入队列操作;

步骤二:

        

        我们进行当前队列每一个元素的出队列操作,并将这个节点的值存放在tmp列表中;

步骤三:

        

        我们将上面根节点的子节点进行遍历,并一一放入到队列中,同时在进行出队列的时候,每出一个队列,该节点的值存放到tmp中,同时该节点的子节点也进行入队列操作;最后每一层的数值都会存放到惹他中,开始新的一层数据存储;

最后结束后如下图所示:

        

综上所述,代码如下:

/*
// Definition for a Node.
class Node {public int val;public List<Node> children;public Node() {}public Node(int _val) {val = _val;}public Node(int _val, List<Node> _children) {val = _val;children = _children;}
};
*/class Solution {public List<List<Integer>> levelOrder(Node root) {List<List<Integer>> ret = new ArrayList<>();if(root == null) return ret;Queue<Node> q = new LinkedList<>();q.add(root);while(!q.isEmpty()){int sz = q.size();//当前队列里的节点个数List<Integer> tmp = new ArrayList<>();//用来统计本层的节点信息for(int i = 0; i<sz;i++){Node t = q.poll();tmp.add(t.val);for(Node child:t.children){if(child != null) q.add(chile);}}ret.add(tmp);   }return ret;}
}

第二题

103. 二叉树的锯齿形层序遍历

        本题详细讲解如上题故事;

        至于区别就是从上往下数二叉树的偶数层,在放入到tmp表中之后进行逆转操作,然后将这些元素在放入到ret总表中,返回;

        综上所述,代码如下:

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<List<Integer>> zigzagLevelOrder(TreeNode root) {List<List<Integer>> ret = new ArrayList<>();if(root == null) return ret;Queue<TreeNode> q = new LinkedList<>();q.add(root);int floor = 1;while(!q.isEmpty()){int sz = q.size();//当前队列里的节点个数,当前层李米娜有多少元素List<Integer> tmp = new ArrayList<>();//用来统计本层的节点信息for(int i = 0; i<sz;i++){TreeNode t = q.poll();tmp.add(t.val);if(t.left != null)q.add(t.left);if(t.right != null)q.add(t.right);}if(floor % 2 == 0) Collections.reverse(tmp);ret.add(tmp);floor ++;}return ret;}
}

 第三题

662. 二叉树最大宽度

下图两个实例如下所示:

  解法:利用数组存储二叉树的方式,给结点编号;(堆的思想)

堆的数据结构:Pair<TreeNode树的结点,Integer定义的下标>

        我们将每一层的这种堆结构的结点放入到队列中,则该层的宽度就是该层最右边的节点下标减去-该层最左边的节点下标+1;

        同时每一层的宽度计算完成后,就将下一层的结点覆盖到队列中,重复计算每一层的节点宽度,直到求出最大值;

        综上所述,代码如下:

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public int widthOfBinaryTree(TreeNode root) {List<Pair<TreeNode,Integer>> q = new ArrayList<>();//用数组模拟队列q.add(new Pair<TreeNode,Integer>(root,1));int ret = 0;//记录最终结果while(!q.isEmpty()){//先更新一下这一层的宽度Pair<TreeNode,Integer> t1 = q.get(0);Pair<TreeNode,Integer> t2 = q.get(q.size()-1);ret = Math.max(ret,t2.getValue() - t1.getValue() +1);//让下一层进队List<Pair<TreeNode,Integer>> tmp = new ArrayList<>();//用数组模拟队列for(Pair<TreeNode,Integer> t:q){TreeNode node = t.getKey();int index = t.getValue();if(node.left != null){tmp.add(new Pair<TreeNode,Integer>(node.left,index*2));}if(node.right != null){tmp.add(new Pair<TreeNode,Integer>(node.right,index*2+1));}}q = tmp;}return ret;}
}

ps:本次的内容就到这里,如果对你有所帮助的话就请一键三连哦!!! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/27769.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式学习——Linux高级编程复习(UDP编程)——day43

1. UDP编程——函数接口 1.1 socket 1. 定义 int socket(int domain, int type, int protocol); 2. 功能 创建一个用来进程通信的套接字,返回文件描述符 3. 参数 domain:AF_INET IPv4协议族 type:SOCK_STREAM 流式套接字 tcp传输协议…

2024新消费特点---探索消费升级与品牌力量

最近看到不少消费视频&#xff0c;想起之前听过江南春的一场分享&#xff0c;结尾总结了张思维导图&#xff0c;分享给大家&#xff01; 随着时代的变迁&#xff0c;消费者的需求和市场环境也在不断演进。今天&#xff0c;我们将深入探讨消费升级的深层含义以及品牌如何在竞争…

集成学习 Ensemble Learning

目录 一、集成学习概览1、介绍2、学习器3、boosting和bagging比较1、样本选择2、样例权重3、预测函数4、计算5、其他 4、结合策略 二、Adaboost1、介绍2、运行过程3、特点4、代码示例 三、随机森林1、介绍2、随机森林生成3、特点4、优缺点5、代码示例6、参数介绍 四、GBDT1、介…

新火种AI|苹果终于迈进了AI时代,是创新还是救赎?

作者&#xff1a;一号 编辑&#xff1a;美美 苹果的AI战略&#xff0c;能够成为它的救命稻草吗&#xff1f; 苹果&#xff0c;始终以其独特的创新能力引领着行业的发展方向。在刚结束不久的2024年的全球开发者大会&#xff08;WWDC&#xff09;上&#xff0c;苹果再次证明了…

高考报志愿闲谈

当你的朋友在选择大学和专业时寻求建议&#xff0c;作为一名研究生并有高考经验的人&#xff0c;你可以提供一些有价值的见解和建议。 兴趣与职业目标&#xff1a; 首先询问他对哪些工科领域感兴趣&#xff0c;如机械工程、电子工程、计算机科学等。探讨他的职业目标。了解他将…

深入浅出 Qt 中 QListView 的设计思想,并掌握大规模、高性能列表的实现方法

在大规模列表控件的显示需求中&#xff0c;必须解决2个问题才能获得较好的性能&#xff1a; 第一就是数据存在哪里&#xff0c; 避免出现数据的副本。第二就是如何展示Item&#xff0c;如何复用或避免创建大量的Item控件。 在QListView体系里&#xff0c;QAbstractListModel解…

面试-NLP八股文

机器学习 交叉熵损失&#xff1a; L − ( y l o g ( y ^ ) ( 1 − y ) l o g ( 1 − ( y ^ ) ) L-(ylog(\hat{y}) (1-y)log(1-(\hat{y})) L−(ylog(y^​)(1−y)log(1−(y^​))均方误差&#xff1a; L 1 n ∑ i 1 n ( y i − y ^ i ) 2 L \frac{1}{n}\sum\limits_{i1}^{n}…

大模型学习之GLM结构

探索GLM&#xff1a;一种新型的通用语言模型预训练方法 随着人工智能技术的不断进步&#xff0c;自然语言处理&#xff08;NLP&#xff09;领域也迎来了革命性的发展。OpenAI的ChatGPT及其后续产品在全球范围内引起了广泛关注&#xff0c;展示了大型语言模型&#xff08;LLM&a…

分离式网络变压器与传统网络变压器在电路设计中如何选择?

Hqst盈盛&#xff08;华强盛&#xff09;电子导读&#xff1a;今天分享的是&#xff1a;分离式网络变压器与传统网络变压器在电路设计中如何选择&#xff1f; 首先&#xff0c;我们要了解传统网络变压器和分离式网络变压器在设计上主要有以下不同点&#xff1a; 1、传统网络变…

java-权限修饰符

## Java中的权限修饰符 Java中的权限修饰符&#xff08;Access Modifiers&#xff09;用于控制类、方法和变量的访问级别。通过权限修饰符&#xff0c;可以在一定范围内保护类的成员&#xff0c;确保数据的封装和安全性。Java提供了四种主要的权限修饰符&#xff1a;private、…

​​Vitis HLS 学习笔记--添加 RTL 黑盒函数

目录 1. 简介 2. 用法详解 2.1 需要的文件 2.1.1 RTL 函数签名 2.1.2 黑盒 JSON 描述文件 2.1.3 RTL IP 文件 2.2 操作步骤 3. 总结 1. 简介 Vitis HLS 工具可以将现有的 Verilog RTL IP&#xff08;即硬件描述语言编写的模块&#xff09;集成到 C/C HLS 项目中。通过…

专家解读 | NIST网络安全框架(3):层级配置

NIST CSF在核心部分提供了六个类别的关键功能和子功能&#xff0c;并围绕CSF的使用提供了层级&#xff08;Tier&#xff09;和配置&#xff08;Profile&#xff09;两种工具&#xff0c;使不同组织和用户更方便有效地使用CSF&#xff0c;本文将深入探讨CSF层级和配置的主要内容…

【PL理论】(24) C- 语言:有块的作用域 | 更新的语法 | 新的语义域 | 环境 vs. 内存

&#x1f4ad; 写在前面&#xff1a;我们将再次扩展之前的C语言&#xff0c;让我们向这种语言引入“作用域”的概念。 目录 0x00 C- 语言&#xff1a;有块的作用域 0x01 C- 语言&#xff1a;更新的语法 0x02 新的语义域 0x03 环境 vs. 内存 0x00 C- 语言&#xff1a;有块的…

RDF 简介

RDF 简介 1. 引言 资源描述框架(Resource Description Framework,简称RDF)是一种用于描述网络资源的标准数据模型。它提供了一种通用的框架,用于表达关于资源的元数据,即数据的数据。RDF是语义网的核心技术之一,旨在使数据不仅能够被计算机处理,还能被计算机理解。在本…

图像去重技术:MD5哈希在自动化中的应用

目录 前言 一、MD5的介绍 二、常见的MD5哈希用途 三、hashlib库介绍 四、实际应用-图片去重 前言 MD5&#xff08;Message Digest Algorithm 5&#xff09;是一种广泛使用的哈希函数&#xff0c;它可以产生一个128位&#xff08;16字节&#xff09;的哈希值&#xff0c;通…

Golang | Leetcode Golang题解之第145题二叉树的后序遍历

题目&#xff1a; 题解&#xff1a; func reverse(a []int) {for i, n : 0, len(a); i < n/2; i {a[i], a[n-1-i] a[n-1-i], a[i]} }func postorderTraversal(root *TreeNode) (res []int) {addPath : func(node *TreeNode) {resSize : len(res)for ; node ! nil; node n…

大语言模型QA

Q:关于 Yi-9B 通过 input/output cosine 来分析模型,可能文档里没有把前提说明白。该指标确实存在你们提到的不同模型大小不可比的问题。所以我们比较的是同一个模型在不同训练阶段,以及 layer 深度相同的dense models 之间的比较。除了发现yi-6B/34B 随着训练 tokens 的增加…

11.NiO多线程优化

场景 单线程配合一个selector选择器管理多个channel上的事件。 问题 1.多核cpu,如果是单线程就会让cpu的力量被浪费。 2.单线程处理多个事件,如果某个事件耗费时间比较久,就会影响其它事件的处理。 例如:redis单线程写的,底层网络用的类似于nio和selector方式编写,所…

Polkadot <> Kusama 桥:打造无信任互操作性的开创性范例

原文&#xff1a;https://www.parity.io/blog/trustless-interoperability 作者&#xff1a;Adrian Catangiu&#xff5c;Rust 区块链核心工程师&#xff0c;Parity Technologies 编译&#xff1a;OneBlock Polkadot <> Kusama 桥是无信任互操作性的开创性范例。本文深…

TCP相关细节

1. 常用TCP参数 1.1 ReceiveBufferSize ReceiveBuffersize指定了操作系统读缓冲区的大小&#xff0c; 默认值是8192(如图5-10 所示)。在第4章的例子中,会有"假设操作系统缓冲区的长度是8" 这样的描述,可通过socket.ReceiveBufferSize 8 实现。当接收端缓冲区满了的时…