AI助力密码安全:利用机器学习提升密码安全性

信息安全已经成为了当今数字世界的一个核心问题,随着互联网技术使用场景的不断增加,创建和管理安全的密码已经成为了保证在线账户安全的关键要求。本文将研究和探讨如何利用人工智能(AI)和机器学习技术来提升密码的安全性。

学习目标

1、了解密码安全的重要性;

2、学习如何使用机器学习方法执行密码分类;

3、使用Python和scikit-learn库构建和评估密码分类模型。

密码安全及其重要意义

密码是保护在线帐户安全的第一道防线。然而,许多用户会直接使用弱密码或在多个帐户中使用相同的密码,从而增加了其帐户被威胁行为者破解和入侵的风险。因此,使用强大且唯一的密码是增强在线账户安全性的一个基本步骤。

一个安全的密码应该由足够长、足够复杂且难以被猜测的字符组合而成。比如说,一个理想状态下的安全密码应当包含大小写字母、数字和特殊字符,并且长度要足够长。除此之外,我们还应该为每一个账户分配和使用唯一的密码,这一点至关重要。因为如果一个账户的密码发生了泄露,那么其他的账户也有可能会受到影响。

密码安全建议

1、密码长度至少12个字符;

2、使用大小写字母、数字和特殊字符的组合;

3、避免使用容易猜测的信息,如出生日期或姓名;

4、为每个帐户使用不同的密码;

5、定期更改密码;

这些建议只能作为增强在线账户安全性的一个初始起点,但是我们也可以同时使用一些更加高级的方法进一步增强密码的安全性,比如说双因素身份验证等等。

使用机器学习进行密码分类

人工智能和机器学习技术可以成为增强密码安全性的有效工具。目前,社区已经开发出了各种各样的机器学习算法可以用于密码分类。在本文中,将使用多项式朴素贝叶斯(Multinomial Naive Bayes)算法创建密码分类模型,而该模型可以帮助我们确定给定的密码健壮度,即密码安全强度是否足够。

除此之外,机器学习算法还可以利用不同的特征将密码分为强密码或弱密码。比如说,密码长度、字母、数字和密码中包含特殊字符的组合等功能,都可用于确定其安全级别。通过组合这些特征,可以使用简单有效的分类算法(如多项式朴素贝叶斯)来进行密码分类。

使用机器学习开发的密码分类模型可以支持密码安全专家对密码进行强度审计,或直接将密码应用到在线平台上。简而言之,这些基于人工智能技术和机器学习技术所开发出的模型可以帮助用户创建安全的密码并增强其帐户的安全性。

机器学习执行密码分类的步骤

1、数据收集和预处理:收集并预处理包含强密码和弱密码的数据集;

2、特征工程:提取密码长度、包含的字符类型和唯一字符数等特征;

3、模型构建:使用多项式朴素贝叶斯或其他合适的分类算法创建模型;

4、模型训练和验证:使用训练数据集训练模型,并使用验证数据集评估模型准确性;

5、模型部署:部署模型,将开发的模型用于密码安全性的实时评估中;

动手实践

在这个部分,我们将动手编写代码来实现本文的目标。

首先需要导入项目所需的库和类,以生成随机密码:

import randomimport stringfrom sklearn.naive_bayes import MultinomialNBfrom sklearn.feature_extraction.text import CountVectorizerfrom sklearn.metrics import accuracy_score

CountVectorizer是一个类,负责将文本文档转换为数字特征向量。同时,我们需要全局定义这个类,以便允许其他函数访问它:

vectorizer = CountVectorizer()  # 全局定义

下列函数负责生成一个指定长度的随机密码,密码由大写字符、小写字符、数字和特殊字符组成:

# 定义一个函数来生成随机密码def generate_password(length):characters = string.ascii_letters + string.digits + string.punctuationpassword = ''.join(random.choice(characters) for i in range(length))return password

下面这个函数将使用提供的密码列表来对机器学习模型进行训练,该模型使用多项式朴素贝叶斯算法创建:

# 定义一个函数来训练机器学习模型def train_model(passwords):X = vectorizer.fit_transform(passwords)y = [1] * len(passwords)  # 假设所有的密码都是强密码model = MultinomialNB()model.fit(X, y)return model

然后生成一个密码列表用于模型训练,这里我们生成了1000个随机密码,每一个密码都由12个字符组成:

# 生成一个密码列表用于模型训练passwords = [generate_password(12) for _ in range(1000)]

现在,使用之前生成的密码列表来对机器学习模型进行训练:

# 训练机器学习模型model = train_model(passwords)

下面的函数可以评估训练模型的准确性,该模型会对测试数据进行预测,并计算这些预测的准确性:

# 评估训练模型的准确性def evaluate_model(model, passwords):X_test = vectorizer.transform(passwords)y_true = [1] * len(passwords)  # 假设所有的密码都是强密码y_pred = model.predict(X_test)accuracy = accuracy_score(y_true, y_pred)return accuracy

下面的代码中,我们生成了一个由12个字符组成的强密码,并将其打印到屏幕上:

# 生成一个强密码strong_password = generate_password(12)print("Generated strong password:", strong_password)

最后,使用测试数据来评估模型的准确性,然后将该模型预测密码强度的准确性打印输出即可。

基于上面给出的代码,我们将能够轻松利用机器学习技术和Python编程语言开发出一个可以用于密码强度分类的工具,该工具可以评估给定密码的强度,并将其分为强密码或弱密码。除此之外,我们还可以利用更多的真实数据集来训练和提升模型的准确度,并将其用于网络安全和密码安全领域。

总结

密码安全是网络安全的基础,机器学习技术可以作为增强密码安全性的强大工具。通过创建能够执行密码分类的机器学习模型,可以帮助社区进一步提升对密码安全性的认知,并强调创建安全密码的重要性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/27340.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GraphQL(9):Spring Boot集成Graphql简单实例

1 安装插件 我这边使用的是IDEA,需要先按照Graphql插件,步骤如下: (1)打开插件管理 在IDEA中,打开主菜单,选择 "File" -> "Settings" (或者使用快捷键 Ctrl Alt S …

11.3 Go 标准库的使用技巧

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

实体类status属性使用枚举类型的步骤

1. 问题引出 当实体类的状态属性为Integer类型时,容易写错 2. 初步修改 把状态属性强制为某个类型,并且自定义一些可供选择的常量。 public class LessonStatus {public static final LessonStatus NOT_LEARNED new LessonStatus(0,"未学习"…

QT打包(windows linux)封包 完整图文版

目录 简介: 一. for windows 1.首先下载组件 2.开始构建Release版本. 3.然后点击构建 4.在文件夹内直接点击exe文件,会报下面的错误,因为缺少dll连接; 5.需要把这个exe单独复制到一个文件夹内, 6.先cd到单独exe所在的文件夹; cd 文件路径 7.然后运行 windeployqt 文…

KIVY Tutorials » Pong Game Tutorial¶

1Pong Game Tutorial — Kivy 2.3.0 documentation Introduction Welcome to the Pong tutorial 欢迎来到 乒乓球 导师辅导课 This tutorial will teach you how to write pong using Kivy. We’ll start with a basic application like the one described in the Create …

笔记100:使用 OSQP-Eigen 对 MPC 进行求解的方法与代码

1. 前言: 我们在对系统进行建模的时候,为了减少计算量,一般都将系统简化为线性的,系统如果有约束,也是将约束简化为线性的; 因此本篇博客只针对两种常见系统模型的 MPC 问题进行求解: 线性系统…

【Android面试八股文】你知道如何实现非阻塞式生产者消费者模式吗?

文章目录 这道题想考察什么 ?考察的知识点日常生活中的生产者消费者模式生产者消费者模式简介为什么需要缓冲区?阻塞与非堵塞非阻塞式生产者消费者模式的实现非阻塞式生产者消费者模式的实现阻塞式生产者消费者模式实现特点这道题想考察什么 ? 是否了解非阻塞式生产者消费者…

S686量产工具授权版,S686开卡教程,S686+EMMC固态硬盘开卡量产成功记录

手里有个S686EMMC组合的固态硬盘,华澜微的S686主控,之前一直没找到工具,感觉是废了,一直放着,偶然机会从桌子里又找到它,于是继续搜寻量产工具。 找到量产部落的一篇文章,里面说首发了S686的量产…

php收银系统源码推荐

智慧新零售系统是一套线下线上一体化的收银系统。致力于给零售门店提供『多样化线下收银』、『ERP进销存』、『o2o小程序商城』、『精细化会员管理』、『丰富营销插件』等一体化行业解决方案! 一、多样化线下收银 1.聚合收款码 ①适用商户:小微门店&am…

后端高频面试题分享-用Java判断一个列表是否是另一个列表的顺序子集

问题描述 编写一个函数,该函数接受两个列表作为参数,判断第一个列表是否是第二个列表的顺序子集,返回True或False。 要求 判断一个列表是否是另一个列表的顺序子集,即第一个列表的所有元素在第二个列表需要顺序出现。列表中的元…

【实例分享】银河麒麟高级服务器操作系统环境资源占用异常-情况分析及处理方法

1.情况描述 使用vsftp进行文件传输,发现sshd进程cpu占用异常,并且su和ssh登录相比正常机器会慢2秒左右。 图1 2.问题分析 通过strace跟踪su和sshd进程,有大量ssh:notty信息。 图2 配置ssh绕过pam模块认证后,ssh连接速…

python通过selenium实现自动登录及轻松过滑块验证、点选验证码(2024-06-14)

一、chromedriver配置环境搭建 请确保下载的驱动程序与你的Chrome浏览器版本匹配,以确保正常运行。 1、Chrome版本号 chrome的地址栏输入chrome://version,自然就得到125.0.6422.142 版本 125.0.6422.142(正式版本) (…

全息图分类及相位型全息图制作方法

全息图是一种光学器件,全息图分为振幅型和相位型全息图,振幅型全息图记录光的振幅信息即强度信息,相位型全息图记录光的相位信息,利用相位信息可以恢复光的波前形状,从而记录物体形状,这里主要介绍相位全息…

【尚庭公寓SpringBoot + Vue 项目实战】图片上传(十)

【尚庭公寓SpringBoot Vue 项目实战】图片上传(十) 文章目录 【尚庭公寓SpringBoot Vue 项目实战】图片上传(十)1、图片上传流程2、图片上传接口查看3、代码开发3.1、配置Minio Client3.2、开发上传图片接口 4、异常处理 1、图片…

适合小白学习的项目1832javaERP管理系统之仓库采购管理Myeclipse开发mysql数据库servlet结构java编程计算机网页项目

一、源码特点 java erp管理系统之仓库采购管理是一套完善的web设计系统,对理解JSP java编程开发语言有帮助采用了serlvet设计,系统具有完整的源代码和数据库,系统采用web模式,系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Mye…

GitCode热门开源项目推荐:Spider网络爬虫框架

在数字化高速发展时代,数据已成为企业决策和个人研究的重要资源。网络爬虫作为一种强大的数据采集工具受到了广泛的关注和应用。在GitCode这一优秀的开源平台上,Spider网络爬虫框架凭借其简洁、高效和易用性,成为了众多开发者的首选。 一、系…

工资信息管理系统的设计

管理员账户功能包括:系统首页,个人中心,基础数据管理,公告管理,津贴管理,管理员管理,绩效管理 用户账户功能包括:系统首页,个人中心,公告管理,津…

STM32项目分享:智能窗帘系统

目录 一、前言 二、项目简介 1.功能详解 2.主要器件 三、原理图设计 四、PCB硬件设计 1.PCB图 2.PCB板打样焊接图 五、程序设计 六、实验效果 七、资料内容 项目分享 一、前言 项目成品图片: 哔哩哔哩视频链接: https://www.bilibili.c…

C#观察者模式应用

目录 一、什么是观察者模式 二、C#中观察者模式的实现 三、两种实现的用法 1、事件与委托 2、IObserver和IObservable 四、参考文献 一、什么是观察者模式 观察者(Observer)模式的定义:指多个对象间存在一对多的依赖关系,当…

探索AIGC与3D技术的融合:从图像到可探索的3D动态场景

随着人工智能和计算机图形技术的飞速发展,AIGC(人工智能生成内容)与3D技术的结合正在为我们打开一扇全新的创意之门。最近,我深入研究了几个令人兴奋的AIGC+3D方案,它们不仅展示了从单张图片或文本提示生成3D点云的强大能力,还进一步实现了AI虚拟试穿和生成高保真3D数字人…