DeepSORT(目标跟踪算法)中的状态向量与状态转移矩阵

DeepSORT(目标跟踪算法)中的状态向量与状态转移矩阵

flyfish

状态转移矩阵(State Transition Matrix)F的构造

这篇是一定要看的,拖到文章的最后部分,需要理解状态转移矩阵怎么来的,怎么是这个样子

状态向量(State Vector)

状态向量描述系统在某个时间点的完整状态。它通常包括多个变量,例如位置、速度、加速度等,具体取决于系统的动态特性。

  • 记作 x k \mathbf{x}_k xk,其中 k k k 是时间步长。

状态转移矩阵(State Transition Matrix)

状态转移矩阵描述系统从一个时间点到下一个时间点的状态变化。它反映了状态向量的演化。

  • 记作 A k \mathbf{A}_k Ak,用于将状态向量从 x k − 1 \mathbf{x}_{k-1} xk1 转移到 x k \mathbf{x}_k xk
    x k = A k − 1 x k − 1 + B k − 1 u k − 1 + w k − 1 \mathbf{x}_k = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} + \mathbf{w}_{k-1} xk=Ak1xk1+Bk1uk1+wk1

  • 状态向量与状态转移矩阵:状态转移矩阵 A k \mathbf{A}_k Ak 描述了状态向量 x k \mathbf{x}_k xk 如何从时间 k − 1 k-1 k1 转移到时间 k k k。例如,对于一个简单的运动模型,状态向量可能包括位置和速度,而状态转移矩阵描述了位置和速度在每个时间步长中的变化。例如,对于一个匀速直线运动模型,状态向量和状态转移矩阵可以表示为: x k = [ x k x ˙ k ] , A k = [ 1 Δ t 0 1 ] \mathbf{x}_k = \begin{bmatrix} x_k \\ \dot{x}_k \end{bmatrix}, \quad \mathbf{A}_k = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} xk=[xkx˙k],Ak=[10Δt1]这里, Δ t \Delta t Δt 是时间步长。

假设我们要跟踪一个在平面上运动的物体,其状态包括位置和速度:

  • 状态向量 x k \mathbf{x}_k xk: x k = [ x k y k x ˙ k y ˙ k ] \mathbf{x}_k = \begin{bmatrix} x_k \\ y_k \\ \dot{x}_k \\ \dot{y}_k \end{bmatrix} xk= xkykx˙ky˙k 这里 x k x_k xk y k y_k yk 是位置, x ˙ k \dot{x}_k x˙k y ˙ k \dot{y}_k y˙k 是速度。
  • 状态转移矩阵 A k \mathbf{A}_k Ak: A k = [ 1 0 Δ t 0 0 1 0 Δ t 0 0 1 0 0 0 0 1 ] \mathbf{A}_k = \begin{bmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} Ak= 10000100Δt0100Δt01 这表示位置随时间步长 Δ t \Delta t Δt 变化。
状态预测

给定当前时间步长 k − 1 k-1 k1 的状态向量 x k − 1 \mathbf{x}_{k-1} xk1 和状态转移矩阵 A k − 1 \mathbf{A}_{k-1} Ak1,下一个时间步长 k k k 的预测状态向量 x ^ k ∣ k − 1 \hat{\mathbf{x}}_{k|k-1} x^kk1 可以表示为:
x ^ k ∣ k − 1 = A k − 1 x k − 1 + B k − 1 u k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} x^kk1=Ak1xk1+Bk1uk1

  • A k − 1 \mathbf{A}_{k-1} Ak1 是状态转移矩阵,描述了系统的动态特性。
  • B k − 1 \mathbf{B}_{k-1} Bk1 是控制输入矩阵,描述了控制输入如何影响系统状态。
  • u k − 1 \mathbf{u}_{k-1} uk1 是控制输入向量,包含外部施加的控制量。
误差协方差预测

误差协方差矩阵 P k ∣ k − 1 \mathbf{P}_{k|k-1} Pkk1 也需要更新,以反映预测状态的不确定性。预测步骤的误差协方差矩阵更新公式为:
P k ∣ k − 1 = A k − 1 P k − 1 ∣ k − 1 A k − 1 T + Q k − 1 \mathbf{P}_{k|k-1} = \mathbf{A}_{k-1} \mathbf{P}_{k-1|k-1} \mathbf{A}_{k-1}^T + \mathbf{Q}_{k-1} Pkk1=Ak1Pk1∣k1Ak1T+Qk1

  • P k − 1 ∣ k − 1 \mathbf{P}_{k-1|k-1} Pk1∣k1 是当前时间步长 k − 1 k-1 k1 的误差协方差矩阵。
  • Q k − 1 \mathbf{Q}_{k-1} Qk1 是过程噪声协方差矩阵,反映了模型中未捕捉到的不确定性。

例子

假设我们要跟踪一个在平面上运动的物体,其状态向量包括位置和速度:
x k = [ x k y k x ˙ k y ˙ k ] \mathbf{x}_k = \begin{bmatrix} x_k \\ y_k \\ \dot{x}_k \\ \dot{y}_k \end{bmatrix} xk= xkykx˙ky˙k
假设物体做匀速直线运动,状态转移矩阵可以表示为:
A = [ 1 0 Δ t 0 0 1 0 Δ t 0 0 1 0 0 0 0 1 ] \mathbf{A} = \begin{bmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} A= 10000100Δt0100Δt01
在没有控制输入的情况下,预测状态的计算如下:
x ^ k ∣ k − 1 = A x k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A} \mathbf{x}_{k-1} x^kk1=Axk1
假设上一时间步长的状态向量为:
x k − 1 = [ 10 15 1 − 1 ] \mathbf{x}_{k-1} = \begin{bmatrix} 10 \\ 15 \\ 1 \\ -1 \end{bmatrix} xk1= 101511
其中,物体在位置 ( 10 , 15 ) (10, 15) (10,15) 处,速度为 ( 1 , − 1 ) (1, -1) (1,1) 米每秒,时间步长 Δ t = 1 \Delta t = 1 Δt=1 秒。

状态转移计算为:
x ^ k ∣ k − 1 = [ 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 ] [ 10 15 1 − 1 ] = [ 10 + 1 15 − 1 1 − 1 ] = [ 11 14 1 − 1 ] \hat{\mathbf{x}}_{k|k-1} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 10 \\ 15 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 10 + 1 \\ 15 - 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 11 \\ 14 \\ 1 \\ -1 \end{bmatrix} x^kk1= 1000010010100101 101511 = 10+115111 = 111411
因此,通过状态转移矩阵,得到了下一个时间步长的预测状态向量 x ^ k ∣ k − 1 = [ 11 14 1 − 1 ] \hat{\mathbf{x}}_{k|k-1} = \begin{bmatrix} 11 \\ 14 \\ 1 \\ -1 \end{bmatrix} x^kk1= 111411

在卡尔曼滤波中,控制输入(control input)指的是系统在每个时间步长可以施加的外部影响或干预。控制输入常用于表示可以影响系统状态的外部因素,例如驾驶员对汽车的操控、无人机的推力指令等。

控制输入的作用

控制输入用于描述外部控制如何影响系统状态的变化。它在状态转移方程中起到了修正预测状态的作用,帮助更准确地反映系统的动态。

控制输入的数学描述

状态转移方程中引入控制输入项,使状态更新更全面:
x k = A k − 1 x k − 1 + B k − 1 u k − 1 + w k − 1 \mathbf{x}_k = \mathbf{A}_{k-1} \mathbf{x}_{k-1} + \mathbf{B}_{k-1} \mathbf{u}_{k-1} + \mathbf{w}_{k-1} xk=Ak1xk1+Bk1uk1+wk1
其中:

  • A k − 1 \mathbf{A}_{k-1} Ak1:状态转移矩阵,描述系统的内在动力学。
  • B k − 1 \mathbf{B}_{k-1} Bk1:控制输入矩阵,描述控制输入对系统状态的影响。
  • u k − 1 \mathbf{u}_{k-1} uk1:控制输入向量,表示外部施加的控制。
  • w k − 1 \mathbf{w}_{k-1} wk1:过程噪声,表示模型中未捕捉到的随机扰动。

示例

假设我们在跟踪一辆汽车,状态向量包括位置和速度:
x k = [ x k x ˙ k ] \mathbf{x}_k = \begin{bmatrix} x_k \\ \dot{x}_k \end{bmatrix} xk=[xkx˙k]

无控制输入的情况

状态转移矩阵假设汽车做匀速运动:
A = [ 1 Δ t 0 1 ] \mathbf{A} = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} A=[10Δt1]
预测下一时间步的状态为:
x ^ k ∣ k − 1 = A x k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A} \mathbf{x}_{k-1} x^kk1=Axk1

有控制输入的情况

假设汽车可以通过加速或减速改变速度,控制输入向量表示加速度:
u k = a k \mathbf{u}_k = a_k uk=ak
控制输入矩阵描述加速度对速度和位置的影响:
B = [ 0.5 Δ t 2 Δ t ] \mathbf{B} = \begin{bmatrix} 0.5 \Delta t^2 \\ \Delta t \end{bmatrix} B=[0.5Δt2Δt]
状态转移方程引入控制输入后变为:
x ^ k ∣ k − 1 = A x k − 1 + B u k − 1 \hat{\mathbf{x}}_{k|k-1} = \mathbf{A} \mathbf{x}_{k-1} + \mathbf{B} \mathbf{u}_{k-1} x^kk1=Axk1+Buk1

具体计算

假设上一时间步的状态向量为:
x k − 1 = [ 10 5 ] \mathbf{x}_{k-1} = \begin{bmatrix} 10 \\ 5 \end{bmatrix} xk1=[105]
其中,位置为10米,速度为5米每秒。时间步长 Δ t = 1 \Delta t = 1 Δt=1 秒。

如果加速度为2米每秒平方( a k = 2 a_k = 2 ak=2),则控制输入向量为:
u k − 1 = 2 \mathbf{u}_{k-1} = 2 uk1=2
状态转移矩阵和控制输入矩阵为:
A = [ 1 1 0 1 ] , B = [ 0.5 1 ] \mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} A=[1011],B=[0.51]
预测下一时间步的状态为:
x ^ k ∣ k − 1 = A x k − 1 + B u k − 1 = [ 1 1 0 1 ] [ 10 5 ] + [ 0.5 1 ] ⋅ 2 = [ 15 5 ] + [ 1 2 ] = [ 16 7 ] \hat{\mathbf{x}}_{k|k-1} = \mathbf{A} \mathbf{x}_{k-1} + \mathbf{B} \mathbf{u}_{k-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 10 \\ 5 \end{bmatrix} + \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} \cdot 2 = \begin{bmatrix} 15 \\ 5 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 16 \\ 7 \end{bmatrix} x^kk1=Axk1+Buk1=[1011][105]+[0.51]2=[155]+[12]=[167]
因此,通过引入控制输入,预测得到下一时间步的位置为16米,速度为7米每秒。

在卡尔曼滤波中,测量向量通过观测矩阵可以得到与实际测量值进行比较的预测测量值。这是滤波器更新步骤中的一个关键部分,用于校正预测的状态。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/26651.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何让 uboot启动时自动执行指令?(执行“mtdparts default”命令)

让uboot启动时自动设置分区(执行“mtdparts default”命令),在uboot进入main_loop()死循环之前添加执行命令代码 run_command("mtdparts default", 0); #define MTDIDS_DEFAULT "nand0mini2440-nand" #define MTD…

Solr7.4.0报错org.apache.solr.common.SolrException

文章目录 org.apache.solr.common.SolrException: Exception writing document id MATERIAL-99598435990497269125316 to the index; possible analysis error: cannot change DocValues type from NUMERIC to SORTED_NUMERIC for field "opt_time"Exception writing…

无法在地址[localhost]和端口[8005]上创建服务器关闭套接字(基本端口[8005]和偏移量[0])

今天小伙伴问我一个问题,说是新服务器启动应用,报了一个错误,如下: 一开始我怀疑是端口被占用 经过排查端口没有被占用,然后我怀疑localhost解析有问题 经过 ping localhost 后,得到以下结果到这里很明…

场外期权能不能开户?场外期权在哪里开?

今天带你了解场外期权能不能开户?场外期权在哪里开?近年来,场外期权交易在金融市场上逐渐盛行起来。有许多人对于场外期权的开户问题感到困惑。 场外期权能不能开户? 资质要求: 个人投资者需要具备一定的金融知识和投…

(三十九)Vue之集中式的状态管理机制Vuex

目录 概念vuex的核心概念State(状态)Getters(获取器)Mutations(突变)Actions(动作) 搭建vuex环境基本使用getters的使用 上一篇:(三十八)Vue之插槽…

ASCII码表介绍

一、ASCII码是什么 ASCII(American Standard Code for Information Interchange,美国信息交换标准代码)是基于拉丁字母的一套电脑编码系统。它可分为基于7位二进制数的标准版本和基于8位二进制数的扩展版本,标准版本主要用于显示现…

CANable USB转CAN适配器固件的安装(ubuntu20.04)

CANable USB转CAN适配器固件和驱动的安装(以candlelight和pcan为例)ubuntu20.04 candlelight candlelight是什么 Candlelight是CANable设备的固件之一,用于将CANable设备转换为本机CAN设备,无需使用slcand。它允许CANable设备直接在Linux系统上以本机C…

南卡、漫步者和Oladance开放式耳机哪个强!无广甄选测评!

在当前市场上,因为许多质量不行,音质平平的开放式耳机让消费者的选择陷入了困难。这些品质低下的产品既无法提供优秀的音频享受,长期佩戴还可能对使用者的听力健康造成健康问题。 作为一名经验丰富的音频设备评测专家,我建议在选…

2563. 统计公平数对的数目

题目&#xff1a; 给你一个下标从 0 开始、长度为 n 的整数数组 nums &#xff0c;和两个整数 lower 和 upper &#xff0c;返回 公平数对的数目 。 如果 (i, j) 数对满足以下情况&#xff0c;则认为它是一个 公平数对 &#xff1a; 0 < i < j < n&#xff0c;且 l…

LeetCode 算法:轮转数组c++

原题链接&#x1f517;&#xff1a;轮转数组 难度&#xff1a;中等⭐️⭐️ 题目 给定一个整数数组 nums&#xff0c;将数组中的元素向右轮转 k 个位置&#xff0c;其中 k 是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步…

Yolo-World训练过程中使用wandb进行可视化

训练过程可视化有两种方式&#xff1a;wandb和tensorboard&#xff0c;这里我采用的是wandb&#xff0c;想要在训练过程中调用wandb只需要在要训练的配置文件&#xff08;如yolo_world_v2_l_vlpan_bn_sgd_1e-3_40e_8gpus_finetune_coco.py&#xff09;中加上一行代码即可&#…

9.1.3 简单介绍单阶段模型YOLO、YOLOv2、YOLO9000、YOLOv3的发展过程

9.1.3 简单介绍单阶段模型YOLO、YOLOv2、YOLO9000、YOLOv3的发展过程 前情回顾&#xff1a;9.1.2 简单介绍两阶段模型R-CNN、SPPNet、Fast R-CNN、Faster R-CNN的发展过程 摘要 YOLOYOLOv2YOLO9000YOLOv3基本思想使用一个端到端的卷积神经网络直接预测目标的类别和位置针对YOL…

【源码】SpringBoot编程式事务使用及执行原理

Spring事务 1、【源码】SpringBoot事务注册原理 2、【源码】Spring Data JPA原理解析之事务注册原理 3、【源码】Spring Data JPA原理解析之事务执行原理 4、【源码】SpringBoot编程式事务使用及执行原理 前言 《Spring事务系列》的前面几篇博文讲解了通过Transactional注…

FPGA - 滤波器 - FIR滤波器设计

一&#xff0c;数字滤波器 滤波器是一种用来减少或消除干扰的器件&#xff0c;其功能是对输入信号进行过滤处理得到所需的信号。滤波器最常见的用法是对特定频率的频点或该频点以外的频率信号进行有效滤除&#xff0c;从而实现消除干扰、获取某特定频率信号的功能。一种更广泛的…

如何高效管理和监控 Elasticsearch 别名及索引?

0、引言 在 Elasticsearch 项目中&#xff0c;管理和监控索引是开发者的一项重要任务。 尤其是当我们需要在项目的管理部分展示索引和别名的统计信息时&#xff0c;了解如何有效地列出这些别名和索引显得尤为重要。 本篇博客将介绍几种在 Elasticsearch 中列出别名和索引的方法…

【Hudi】核心概念-基本概念

目录 基本概念时间轴(TimeLine)Instant action:在表上执行的操作类型Instant timeState两个时间概念 文件布局(File Layout)索引(Index)原理索引选项全局索引与非全局索引索引的选择策略 表类型(Table Types)查询类型Snapshot QueriesIncremental QueriesRead Optimized Querie…

集合并集交集差集【工具类】

一、使用Stream流进行处理 在Java开发中&#xff0c;对于集合的操作是非常常见的&#xff0c;特别是交集、并集和差集这样的操作。这些操作可以通过Java 8中的Stream API来实现。 •交集&#xff1a;取两个集合中相同的部分。例如&#xff0c;如果我们有两个List集合&#xff…

【2024最新精简版】Redis面试篇

文章目录 什么是红锁Redis有哪些框架&#xff1f;你们项目中哪里用到了Redis ?Redis的常用数据类型有哪些 ?Redis的数据持久化策略有哪些 ?Redis的数据过期策略有哪些 ?Redis的数据淘汰策略有哪些 ?你们使用Redis是单点还是集群 ? 哪种集群 ?Redis集群有哪些方案, 知道嘛…

iOS--oc对象,类,和元类本质

iOS--oc对象&#xff0c;类&#xff0c;和元类本质 前言实例对象的具体结构自定义类对象的结构继承关系 类信息的存放对isa、superclass总结 前言 最近在学习runtime的过程中&#xff0c;发现其中消息发送-动态方法解析-消息转发中涉及到了大量的类与对象的底层知识&#xff0…

在linux系统上挂载新硬盘

服务器的硬盘空间不够了&#xff0c;自己重新安装了一个硬盘&#xff0c;需要挂载&#xff0c;因为只是用来存放数据&#xff0c;所以不需要分区&#xff0c;直接挂载就可以 #查看当前所有硬盘 sudo fdisk -l #用于显示文件系统的磁盘空间使用情况 df -h发现一个/dev/nvme0n1 …