基于STM32和人工智能的智能交通管理系统

目录

  1. 引言
  2. 环境准备
  3. 智能交通管理系统基础
  4. 代码实现:实现智能交通管理系统
    • 4.1 数据采集模块
    • 4.2 数据处理与分析
    • 4.3 控制系统
    • 4.4 用户界面与数据可视化
  5. 应用场景:智能交通管理与优化
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

随着城市化进程的加快,智能交通管理系统在缓解交通拥堵、提高交通效率和安全方面起到了重要作用。通过人工智能算法对交通数据进行分析,可以实现更智能的交通管理。本文将详细介绍如何在STM32嵌入式系统中结合人工智能技术实现一个智能交通管理系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  • 开发板:STM32F407 Discovery Kit
  • 调试器:ST-LINK V2或板载调试器
  • 交通传感器:如超声波传感器、红外传感器
  • 摄像头模块:用于交通监控
  • LED显示屏:用于交通信息显示
  • 信号灯控制器:用于交通灯控制
  • 电源:12V或24V电源适配器

软件准备

  • 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  • 调试工具:STM32 ST-LINK Utility或GDB
  • 库和中间件:STM32 HAL库、TensorFlow Lite
  • 人工智能模型:用于数据分析和预测

安装步骤

  1. 下载并安装 STM32CubeMX
  2. 下载并安装 STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序
  5. 下载并集成 TensorFlow Lite 库

3. 智能交通管理系统基础

控制系统架构

智能交通管理系统由以下部分组成:

  • 数据采集模块:用于采集交通数据(车流量、车速、车牌识别等)
  • 数据处理与分析:使用人工智能算法对采集的数据进行分析和预测
  • 控制系统:根据分析结果控制交通信号灯和显示屏
  • 显示系统:用于显示交通信息和系统状态
  • 用户输入系统:通过按键或其他输入设备进行设置和调整

功能描述

通过传感器和摄像头采集交通数据,并使用人工智能算法进行分析和预测,自动控制交通信号灯和显示屏,实现智能化的交通管理。用户可以通过输入设备进行设置,并通过显示屏查看当前状态和系统建议。

4. 代码实现:实现智能交通管理系统

4.1 数据采集模块

配置超声波传感器
使用STM32CubeMX配置GPIO接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO引脚,设置为输入模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"#define TRIG_PIN GPIO_PIN_0
#define ECHO_PIN GPIO_PIN_1
#define GPIO_PORT GPIOAvoid GPIO_Init(void) {__HAL_RCC_GPIOA_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.Pin = TRIG_PIN | ECHO_PIN;GPIO_InitStruct.Mode = GPIO_MODE_INPUT;GPIO_InitStruct.Pull = GPIO_NOPULL;HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}uint32_t Read_Ultrasonic_Distance(void) {uint32_t local_time = 0;HAL_GPIO_WritePin(GPIO_PORT, TRIG_PIN, GPIO_PIN_SET);HAL_Delay(10);HAL_GPIO_WritePin(GPIO_PORT, TRIG_PIN, GPIO_PIN_RESET);while (!(HAL_GPIO_ReadPin(GPIO_PORT, ECHO_PIN)));while (HAL_GPIO_ReadPin(GPIO_PORT, ECHO_PIN)) {local_time++;HAL_Delay(1);}return local_time;
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();uint32_t distance;while (1) {distance = Read_Ultrasonic_Distance();HAL_Delay(1000);}
}

配置摄像头模块
使用STM32CubeMX配置SPI或I2C接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的SPI或I2C引脚,设置为相应的通信模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "camera.h"void Camera_Init(void) {// 初始化摄像头模块
}void Camera_Capture_Image(uint8_t* image_buffer) {// 捕获图像数据
}int main(void) {HAL_Init();SystemClock_Config();Camera_Init();uint8_t image_buffer[IMAGE_SIZE];while (1) {Camera_Capture_Image(image_buffer);HAL_Delay(5000);  // 每5秒捕获一次图像}
}

4.2 数据处理与分析

集成TensorFlow Lite进行数据分析
使用STM32CubeMX配置必要的接口,确保嵌入式系统能够加载和运行TensorFlow Lite模型。

代码实现

#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
#include "model_data.h"  // 人工智能模型数据namespace {tflite::MicroErrorReporter micro_error_reporter;tflite::MicroInterpreter* interpreter = nullptr;TfLiteTensor* input = nullptr;TfLiteTensor* output = nullptr;constexpr int kTensorArenaSize = 2 * 1024;uint8_t tensor_arena[kTensorArenaSize];
}void AI_Init(void) {tflite::InitializeTarget();static tflite::MicroMutableOpResolver<10> micro_op_resolver;micro_op_resolver.AddFullyConnected();micro_op_resolver.AddSoftmax();const tflite::Model* model = tflite::GetModel(model_data);if (model->version() != TFLITE_SCHEMA_VERSION) {TF_LITE_REPORT_ERROR(&micro_error_reporter,"Model provided is schema version %d not equal ""to supported version %d.",model->version(), TFLITE_SCHEMA_VERSION);return;}static tflite::MicroInterpreter static_interpreter(model, micro_op_resolver, tensor_arena, kTensorArenaSize,&micro_error_reporter);interpreter = &static_interpreter;interpreter->AllocateTensors();input = interpreter->input(0);output = interpreter->output(0);
}void AI_Run_Inference(float* input_data, float* output_data) {// 拷贝输入数据到模型输入张量for (int i = 0; i < input->dims->data[0]; ++i) {input->data.f[i] = input_data[i];}// 运行模型推理if (interpreter->Invoke() != kTfLiteOk) {TF_LITE_REPORT_ERROR(&micro_error_reporter, "Invoke failed.");return;}// 拷贝输出数据for (int i = 0; i < output->dims->data[0]; ++i) {output_data[i] = output->data.f[i];}
}int main(void) {HAL_Init();SystemClock_Config();AI_Init();float input_data[INPUT_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 获取传感器数据,填充 input_data 数组AI_Run_Inference(input_data, output_data);// 根据模型输出数据执行相应的操作HAL_Delay(1000);}
}

4.3 控制系统

配置GPIO控制信号灯和显示屏
使用STM32CubeMX配置GPIO:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO引脚,设置为输出模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"#define RED_LIGHT_PIN GPIO_PIN_0
#define GREEN_LIGHT_PIN GPIO_PIN_1
#define YELLOW_LIGHT_PIN GPIO_PIN_2
#define DISPLAY_PIN GPIO_PIN_3
#define GPIO_PORT GPIOAvoid GPIO_Init(void) {__HAL_RCC_GPIOA_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.Pin = RED_LIGHT_PIN | GREEN_LIGHT_PIN | YELLOW_LIGHT_PIN | DISPLAY_PIN;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}void Control_Lights(uint8_t red, uint8_t yellow, uint8_t green) {HAL_GPIO_WritePin(GPIO_PORT, RED_LIGHT_PIN, red ? GPIO_PIN_SET : GPIO_PIN_RESET);HAL_GPIO_WritePin(GPIO_PORT, YELLOW_LIGHT_PIN, yellow ? GPIO_PIN_SET : GPIO_PIN_RESET);HAL_GPIO_WritePin(GPIO_PORT, GREEN_LIGHT_PIN, green ? GPIO_PIN_SET : GPIO_PIN_RESET);
}void Control_Display(uint8_t state) {HAL_GPIO_WritePin(GPIO_PORT, DISPLAY_PIN, state ? GPIO_PIN_SET : GPIO_PIN_RESET);
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();AI_Init();float input_data[INPUT_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 获取传感器数据,填充 input_data 数组// 运行AI推理AI_Run_Inference(input_data, output_data);// 根据AI输出控制交通灯和显示屏uint8_t red = output_data[0] > 0.5;uint8_t yellow = output_data[1] > 0.5;uint8_t green = output_data[2] > 0.5;Control_Lights(red, yellow, green);Control_Display(output_data[3] > 0.5);  // 假设显示屏状态由output_data[3]控制HAL_Delay(1000);}
}

4.4 用户界面与数据可视化

配置TFT LCD显示屏
使用STM32CubeMX配置SPI接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的SPI引脚,设置为SPI模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "spi.h"
#include "lcd_tft.h"void Display_Init(void) {LCD_TFT_Init();
}void Display_Traffic_Data(float* output_data) {char buffer[32];sprintf(buffer, "Red: %s", output_data[0] > 0.5 ? "ON" : "OFF");LCD_TFT_Print(buffer);sprintf(buffer, "Yellow: %s", output_data[1] > 0.5 ? "ON" : "OFF");LCD_TFT_Print(buffer);sprintf(buffer, "Green: %s", output_data[2] > 0.5 ? "ON" : "OFF");LCD_TFT_Print(buffer);sprintf(buffer, "Display: %s", output_data[3] > 0.5 ? "ON" : "OFF");LCD_TFT_Print(buffer);
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();DHT22_Init();ADC_Init();AI_Init();Display_Init();float input_data[INPUT_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 读取传感器数据并填充 input_data 数组// 运行AI推理AI_Run_Inference(input_data, output_data);// 显示交通数据和AI结果Display_Traffic_Data(output_data);// 根据AI结果控制交通灯和显示屏uint8_t red = output_data[0] > 0.5;uint8_t yellow = output_data[1] > 0.5;uint8_t green = output_data[2] > 0.5;Control_Lights(red, yellow, green);Control_Display(output_data[3] > 0.5);  // 假设显示屏状态由output_data[3]控制HAL_Delay(1000);}
}

5. 应用场景:智能交通管理与优化

城市交通管理

智能交通管理系统可以应用于城市交通管理,通过实时监控和控制交通信号灯,优化交通流量,缓解交通拥堵,提高交通效率。

智能停车场管理

在智能停车场中,系统可以监控车辆进出,提供停车位信息,优化停车管理,减少停车时间和资源浪费。

智能交通预警

通过集成摄像头和人工智能算法,系统可以识别交通事故或异常情况,提供实时预警,提升交通安全。

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

 

6. 问题解决方案与优化

常见问题及解决方案

  1. 传感器数据不准确:确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。
  2. 设备响应延迟:优化控制逻辑和硬件配置,减少设备响应时间,提高系统反应速度。
  3. 显示屏显示异常:检查SPI通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

优化建议

  1. 数据集成与分析:集成更多类型的传感器数据,使用大数据分析和机器学习技术进行交通流量预测和趋势分析。
  2. 用户交互优化:改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。
  3. 智能化控制提升:增加智能决策支持系统,根据历史数据和实时数据自动调整控制策略,实现更高效的交通管理。

7. 收尾与总结

本教程详细介绍了如何在STM32嵌入式系统中结合人工智能技术实现智能交通管理系统,从硬件选择、软件实现到系统配置和应用场景都进行了全面的阐述。通过合理的技术选择和系统设计,可以构建一个高效且功能强大的智能交通管理系统。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/26311.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法第六天:力扣第977题有序数组的平方

一、977.有序数组的平方的链接与题目描述 977. 有序数组的平方的链接如下所示&#xff1a;https://leetcode.cn/problems/squares-of-a-sorted-array/description/https://leetcode.cn/problems/squares-of-a-sorted-array/description/ 给你一个按 非递减顺序 排序的整数数组…

【C++】STL中stack和queue(适配器版)的模拟实现

前言&#xff1a;在此之前我们讲到了stack和queue还有deque的常见的使用方法&#xff0c;并且也在数据结构的时候用C语言去实现过栈和队列&#xff0c;今天我们将进一步的用C去模拟实现stack和queue &#x1f496; 博主CSDN主页:卫卫卫的个人主页 &#x1f49e; &#x1f449; …

vue 之 vuex

目录 vuex 是什么 Vuex管理哪些状态呢&#xff1f; Vuex 页面刷新数据丢失怎么解决 1. 使用浏览器的本地存储 2. 使用 Vuex 持久化插件 3. 使用后端存储 注意事项 Vuex 为什么要分模块并且加命名空间 vuex 是什么 vuex 是专门为 vue 提供的全局状态管理系统&#xff0c…

【应用案例】如何解决无人驾驶车辆的动力转向问题

埃尔朗根-纽伦堡大学名称为高能赛车运动队(High-Octane Motorsports e.V.)的学生方程式车队都设计、构建和制造具有创新意义且独特的赛车。然后&#xff0c;他们将参加三种不同类别的大学生方程式比赛&#xff1b;该项赛事中的参赛队伍来自于世界各地。 电动、无人驾驶和燃油车…

Windows 11 24H2版首发体验!附详细更新升级安装教程

Windows 11 24H2 版首发体验&#xff01;这是微软2024年的大版本更新&#xff0c;新增超多新功能&#xff0c;以下会给你细细道来。这个版本目前小编亲测&#xff0c;使用非常流畅&#xff0c;没有什么明显问题。系统是已经集成了VB6/VC2005/VC2008/VC2010/VC2012/VC2013/VC201…

Dorkish:一款针对OSINT和网络侦查任务的Chrome扩展

关于Dorkish Dorkish是一款功能强大的Chrome扩展工具&#xff0c;该工具可以为广大研究人员在执行OSINT和网络侦查任务期间提供强大帮助。 一般来说&#xff0c;广大研究人员在执行网络侦查或进行OSINT信息收集任务过程中&#xff0c;通常会使用到Google Dorking和Shodan&…

2024年高考:计算机相关专业还值得选择吗?

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a;日常聊聊 ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 前言 正文 行业竞争现状 市场饱和与新兴技术的影响 如何保持竞争力 专业与个人的匹配度判断 专业核心课程与技术能力 个人兴趣与职业…

使用开源的zip.cpp和unzip.cpp实现压缩包的创建与解压(附源码)

目录 1、使用场景 2、压缩包的创建 3、压缩包的解压 4、CloseZipZ和CloseZipU两接口的区别 5、开源zip.cpp和unzip.cpp文件的下载 VC++常用功能开发汇总(专栏文章列表,欢迎订阅,持续更新...)https://blog.csdn.net/chenlycly/article/details/124272585C++软件异常排…

【C语音 || 数据结构】二叉树--堆

文章目录 前言堆1.1 二叉树的概念1.2 满二叉树和完美二叉树1.3 堆的概念1.4 堆的性质1.4 堆的实现1.4.1堆的向上调整算法1.4.1堆的向下调整算法1.4.1堆的接口实现1.4.1.1堆的初始化1.4.1.2堆的销毁1.4.1.3堆的插入1.4.1.4堆的删除1.4.1.4堆的判空1.4.1.4 获取堆的数据个数 前言…

单体架构改造为微服务架构之痛点解析

1.微服务职责划分之痛 1.1 痛点描述 微服务的难点在于无法对一些特定职责进行清晰划分&#xff0c;比如某个特定职责应该归属于服务A还是服务B? 1.2 为服务划分原则的痛点 1.2.1 根据存放主要数据的服务所在进行划分 比如一个能根据商品ID找出商品信息的接口&#xff0c;把…

随手记:uniapp图片展示,剩余的堆叠

UI效果图&#xff1a; 实现思路&#xff1a; 循环图片数组&#xff0c;只展示几张宽度就为几张图片边距的宽度&#xff0c;剩下的图片直接堆叠展示 点击预览的时候传入当前的下标&#xff0c;如果是点击堆叠的话&#xff0c;下标从堆叠数量开始计算 <template><…

pycharm基本使用(常用快捷键)

0.下载 pycharm官网下载 选择合适的版本&#xff0c;本文以2024.1为例 1.简单应用 常用快捷键 ctrlD 复制当前行 ctrlY 删除当前行 ctrlX 剪切当前行&#xff08;可用作删除&#xff0c;更顺手&#xff09; shift↑ 选中多行ctrlshiftF10 运行 shiftF9 调试ctrl/ 注释当前…

数据结构入门:探索数据结构第一步

0.引言 在我们的日常生活中&#xff0c;经常需要管理大量的数据&#xff0c;就譬如学校中有好几千个学生&#xff0c;中国有十三亿人口&#xff0c;对于那么多的数据进行查找、插入、排序等操作就会比较慢。人们为了解决这些问题&#xff0c;提高对数据的管理效率&#xff0c;…

docker被封禁,怎么拉取镜像,打包所有镜像

因为docker被国内封禁了&#xff0c;所以我把电脑上之前的镜像全部打包出来了 你们也可以打包&#xff0c;我提供一个脚本&#xff0c;你运行即可 export_docker.sh #!/bin/bash# 导出目录 EXPORT_DIR"docker_images_backup" mkdir -p "$EXPORT_DIR"# 获…

Calibre版图验证工具调用_笔记

Siemens EDA Calibre版图验证工具调用 采用Cadence Virtuoso Layout Editor直接调用Siemens EDA Calibre工具需要进行文件设置&#xff0c; 在用户的根目录下&#xff0c;找到.cdsinit文件&#xff0c; 在文件的结尾处添加以下语句即可&#xff0c;其中&#xff0c;calibre.skl…

电表抄表软件是什么?

一、电表抄表软件的概念和作用 电表抄表软件&#xff0c;是一种致力于电力企业定制的数字化工具&#xff0c;用以远程控制搜集、管理方法与分析电表数据信息。它取代了传统人工抄表方法&#xff0c;大大提高了工作效率&#xff0c;降低了人为失误&#xff0c;并且能实时监控系…

flask基础3-蓝图-cookie-钩函数-flask上下文-异常处理

目录 一&#xff1a;蓝图 1.蓝图介绍 2.使用步骤 3.蓝图中的静态资源和模板 二.cookie和session 1.cookie 2.flask中操作cookie 3.session 4.session操作步骤 三.请求钩子 四.flask上下文 1.介绍 2.请求上下文&#xff1a; 3.应用上下文 3.g对象 五&#xff1a;…

【Linux】进程控制2——进程等待(waitwaitpid)

1. 进程等待必要性 我们知道&#xff0c;子进程退出&#xff0c;父进程如果不管不顾&#xff0c;就可能造成"僵尸进程”的问题&#xff0c;进而造成内存泄漏。另外&#xff0c;进程一旦变成僵尸状态&#xff0c;那就刀枪不入&#xff0c;“杀人不眨眼”的kill -9 也无能为…

香港户口需要什么条件?有学历要求吗?最新香港落户途径详解!

香港户口需要什么条件&#xff1f;有学历要求吗&#xff1f;最新香港落户途径详解&#xff01; 由于香港放开“落户”窗口&#xff0c;想去香港发展或者想拿香港身份的朋友都想抓住这个机会赶紧申请。 只是&#xff0c;香港户口办理是有条件的&#xff0c;而且有学历要求&…

VScode中连接并使用docker容器

前提条件&#xff1a; 1.在windows下安装Docker Desktop(方法可见下面的教程) Docker Desktop 安装使用教程-CSDN博客 2.在vscode安装3个必备的插件 3.先在ubuntu中把docker构建然后运行 4.打开vscode&#xff0c;按下图顺序操作 调试好之后上传到git上&#xff0c;然后后面…