60 关于 SegmentFault 的一些场景 (1)

前言

呵呵 此问题主要是来自于 帖子 月经结贴 -- 《Segmentation Fault in Linux》

这里主要也是 结合了作者的相关 case, 来做的一些 调试分享 

当然 很多的情况还是 蛮有意思 

 

本文主要问题如下 

1. 访问可执行文件中的 只读数据
2. 访问不存在的虚拟地址
3. 访问内核地址
4. 访问空指针
5. 访问异常堆地址1
6. 访问异常堆地址2
7. 访问异常堆地址3

 

 

1. 访问可执行文件中的 只读数据

比如如下数据, “Hello World” 会被放到 .text 段, 该段只读, 这里程序中试图更新该内存的数据 

#include <stdio.h>
#include <stdlib.h>int main() {char* s = "Hello World";s[1] = 'x';}

 

调试上下文如下 

page fault 的时候 ip 为 4195562 = 0x4004EA

error_code 为 7, PF_PROT | PF_WRITE | PF_USER

40dbcff97a0f44afa8f0bd3f6d18dba0.png

 

0x4004EA 对应的信息如下, 是一段执行代码 

07a7943c31f747159db10eed73f75a78.png

 

对应于 main 中的 如下代码, 映射到业务源代码就是 “s[1] = 'x';”

c7e70030529041989f609294980eee75.png

 

校验的时候 期望写操作, 但是实际 不支持写操作 

d032a0c5c1ed42e69c18b0f2840890a9.png

 

接下来就是 输出内核日志信息, 以及向目标进程发送 SIGSEGV 信号  1e23f599874c40c9afbc89f4881336c8.png

 

输出内核日志信息如下

日志中输出了 进程名称, 进程编号, 访问的地址, 指令寄存器, 栈顶寄存器, 错误编码 等等信息

3f493281ead14310b536c4f7ca1f382c.png

 

出现问题的异常代码为 0x4004ea, 栈顶寄存器的值为 0x7ffdc7c9b1f0

错误编码为 7 表示 PF_PROT | PF_WRITE | PF_USER

(initramfs) ./Test16SigSegvAccessConstants

[  207.776273] Test16SigSegvAc[258]: segfault at 400585 ip 00000000004004ea sp 00007ffdc7c9b1f0 error 7 in Test16SigSegvAccessConstants[400000+1000]

 

0x400585 为 .rodata 中 

d8b772dc60aa4ba494510dbc0a431816.png

 

0x4004ea 为 main 中执行出现异常的代码段 

f0d040600ba04069b94d20ed14c9c827.png

 

 

2. 访问不存在的虚拟地址  

#include <stdio.h>
#include <stdlib.h>int main() {int *p = (int *) 0x7ffff7a8e58f;*p = 10;}

 

这个是根据 address 查询虚拟地址, 查询不到

直接走的 bad_area, 输出日志信息, 发送 SIGSEGV 给目标进程 

f36e05480c2f460aac5dbda97010e9de.png

 

报错日志信息为 

(initramfs) ./Test16SigSegvAccessUnknownAddr

[ 7575.969176] Test16SigSegvAc[262]: segfault at 7ffff7a8e58f ip 00000000004004ec sp 00007fffd34e74d0 error 6 in Test16SigSegvAccessUnknownAddr [400000+1000]

 

出现问题的进程为 262号进程, 异常访问的地址为 0x 7ffff7a8e58f

出现问题的异常代码为 0x4004ec, 栈顶寄存器的值为 0x 7fffd34e74d0

错误编码为 6 表示 PF_WRITE | PF_USER

 

0x7ffff7a8e58f 为 main 中定义的需要访问的异常地址 

 

0x4004ec 为 main 中执行出现异常的代码段 

f053ec239aba4f6d904db8e3c0e72d17.png

 

 

3. 访问内核地址

#include <stdio.h>
#include <stdlib.h>int main() {int *p = (int *) 0xffff88007fb89a80;*p = 10;}

 

如果是访问内核空间的地址

如果是普通用户程序访问, 直接发送 SIGSEGV 信号量 

91b8ed9a19e5415b970a81ff5a744042.png

 

报错日志信息为 

(initramfs) ./Test16SigSegvAccessKernelAddr

[ 1014.007466] Test16SigSegvAc[259]: segfault at ffff88007fb89a80 ip 00000000004004ec sp 00007fffc027d130 error 7 in Test16SigSegvAccessKernelAddr[400000+1000]

 

出现问题的进程为 259号进程, 异常访问的地址为 0x ffff88007fb89a80

出现问题的异常代码为 0x4004ec, 栈顶寄存器的值为 0x 7fffc027d130

错误编码为 7 表示 PF_PROT | PF_WRITE | PF_USER

 

0x ffff88007fb89a80 为 main 中定义的需要访问的异常地址 

 

0x4004ec 为 main 中执行出现异常的代码段 

6d525d21e10944b8a1acf3bab804cdb8.png

 

 

4. 访问空指针

#include <stdio.h>
#include <stdlib.h>int main() {int *p = NULL;*p = 10;}

 

这个是根据 address 查询虚拟地址, 查询不到

直接走的 bad_area, 输出日志信息, 发送 SIGSEGV 给目标进程 

d3cee4862dc448fa908a580c86f9cb7f.png

 

 

报错日志信息为 

(initramfs) ./Test16SigSegvAccessNpe

[ 9696.656307] Test16SigSegvAc[264]: segfault at 0 ip 00000000004004e6 sp 00007fffd2d459c0 error 6 in Test16SigSegvAccessNpe[400000+1000]

 

出现问题的进程为 264号进程, 异常访问的地址为 0x 0

出现问题的异常代码为 0x4004e6, 栈顶寄存器的值为 0x 7fffd2d459c0

错误编码为 6 表示 PF_WRITE | PF_USER

 

0x0 为 main 中定义的需要访问的异常地址 

 

0x4004e6 为 main 中执行出现异常的代码段 

39ceb0c272dd4146ae020ba38d09b442.png

 

 

5. 访问异常堆地址1

这里调整了一下 原文档中的测试用例, 源文档中作者的理解应该是存在问题 

所以 当我看到 overflow 15k 的时候很奇怪, 源文档中每次增量是 0k, 1k, 2k, 3k, …, 15k

但是 按照原作者的期望应该每次 增量是 1k, 这里我们稍微 调整了一下 测试用例

然后 原作者文档中提到当初次分配16M的时候, SISSEGV 延迟到了 180k, 这个 按道理来说作者的理解应该也是存在问题, 初次分配 16M的时候 malloc 分配的虚拟地址是在 mmap 映射区 这两种情况 得分开讨论

#include <stdio.h>
#include <stdlib.h>#define K 1024
int main () {char* c;int i = 0;c = malloc (1);while (1) {char* off = c + i*K;*off = 'a';printf ("overflow %dK\n", i);i ++;}
}

 

按照我们对于 malloc 的理解, 程序开始的时候 malloc 分配的 chunk 会在 132kb 左右 

这里 malloc(1) 会暂用 32byte, printf 会占用 1kb 左右 

然后 第一个循环中 操作的是 c 所在的内存空间, 第二个循环 操作的是 printf 的缓冲区 

到后面 132kb 末尾, 每 4kb 会有一个缺页中断, 操作的是对应的偏移的空间 

超过 132kb 之后, 会因为找不到 vma, 而发生 SIGSEGV

 

 

6. 访问异常堆地址2

#include <stdio.h>
#include <stdlib.h>#define K 1024
int main () {int* a;a = malloc (sizeof(int));*a = 100;printf ("0x%x\n", a);printf ("%d\n", *a);free (a);printf ("%d\n", *a);
}

 

这个测试用例不会报错很正常 

因为 malloc, free 维护的空间, 不管 free 之前还是在之后, 其申请的虚拟地址空间 都属于当前进程

malloc(sizeof(int)) 会申请 132kb 的空间 

然后 a 对应的地址会为 0x602010, 然后 这块地址 可读可写

不会 出现 SIGSEGV 

这里 page_fault 产生的 address 为 0x602008 是因为是在 malloc 的过程中设置这块空间的头部信息, 这里会走正常的缺页中断 

fa7a0970a58a4400b984e0fd09caf33f.png

 

这里 走正常的缺页中断处理

第二次访问的时候, 地址合法, 并且 虚拟内存对应的物理内存已经加载 

ce234a8efadf488db1f7ba49f696c239.png

 

我们大致看一下这个过程中 glibc 的 free 的相关处理 

这里两次输出之所以 第二次值为 0, 是因为 free 的时候需要在 chunkptr 中维护空闲链表信息

这里是当前区域的 第一块空闲区域, 更新 p->forward 为 NULL, 值为 0

d2db6bc61d7246d8993521cf183200bd.png

 

调整一下代码, 我们从程序上面简单的验证一下 这里的 forward 的处理 

#include <stdio.h>
#include <stdlib.h>#define K 1024
int main () {int* a = malloc (sizeof(int));int* b = malloc (sizeof(int));*a = 100;printf ("0x%x\n", a);printf ("%d\n", *a);free (a);printf ("%d\n", *a);*b = 100;printf ("0x%x\n", b);printf ("%d\n", *b);free (b);printf ("%d\n", *b);}

 

b 对应的 chunkptr->fd[等价于b的数据空间] 为 6299648 为 0x602000, 记录的是前一块 空闲的chunkptr 的地址

a 对应的 chunkptr->fd[等价于a的数据空间] 为 0 为 NULL, 记录的是前一块空闲的 chunkptr 的地址

root@ubuntu:~/Desktop/linux/HelloWorld# ./Test16SigSegvAccessInvalidHeapAddr02
0x602010
100
0
0x602030
100
6299648

 

 

7. 访问异常堆地址3

这个主要是在 glibc 层面的限制, 处理 

#include <stdio.h>
#include <stdlib.h>
#include <string.h>void foo () {char c;memset (&c, 0x55, 128);
}int main () {foo();
}

 

日志输出如下

8038f369d6894bb7bcc7ba647245a20a.png

 

在 glibc 层面处理如下, 输出了如上 日志信息, 然后向给定的进程 发送了 SIGABRT 信号  839bfcee47974c0cbfa7fbd120aa091c.png

 

内核这边 调试收到 SIG_ABRT 的信号的地方如下 

f6b42efa2b174b65b00c853921bd73ad.png

 

foo 编译结果如下 

b8ffa0c5636f4b92913f2d3ff9d45c00.png

 

 gdb 调试这个过程如下 

Reading symbols from Test16SigSegvAccessInvalidHeapAddr03...
(gdb) list
1
2       #include <stdio.h>
3       #include <stdlib.h>
4       #include <string.h>
5
6       void foo () {
7               char c;
8
9               memset (&c, 0x55, 128);
10      }
(gdb) b Test16SigSegvAccessInvalidHeapAddr03.c:9
Breakpoint 1 at 0x4005ad: file Test16SigSegvAccessInvalidHeapAddr03.c, line 9.
(gdb) run
Starting program: /root/linux/tmp/Test16SigSegvAccessInvalidHeapAddr03Breakpoint 1, foo () at Test16SigSegvAccessInvalidHeapAddr03.c:9
9               memset (&c, 0x55, 128);
(gdb) disassemble
Dump of assembler code for function foo:0x0000000000400596 <+0>:     push   %rbp0x0000000000400597 <+1>:     mov    %rsp,%rbp0x000000000040059a <+4>:     sub    $0x10,%rsp0x000000000040059e <+8>:     mov    %fs:0x28,%rax0x00000000004005a7 <+17>:    mov    %rax,-0x8(%rbp)0x00000000004005ab <+21>:    xor    %eax,%eax
=> 0x00000000004005ad <+23>:    lea    -0x9(%rbp),%rax0x00000000004005b1 <+27>:    mov    $0x80,%edx0x00000000004005b6 <+32>:    mov    $0x55,%esi0x00000000004005bb <+37>:    mov    %rax,%rdi0x00000000004005be <+40>:    call   0x400470 <memset@plt>0x00000000004005c3 <+45>:    nop0x00000000004005c4 <+46>:    mov    -0x8(%rbp),%rax0x00000000004005c8 <+50>:    xor    %fs:0x28,%rax0x00000000004005d1 <+59>:    je     0x4005d8 <foo+66>0x00000000004005d3 <+61>:    call   0x400460 <__stack_chk_fail@plt>0x00000000004005d8 <+66>:    leave0x00000000004005d9 <+67>:    ret
End of assembler dump.
(gdb) stepi
0x00000000004005b1      9               memset (&c, 0x55, 128);
(gdb) stepi
0x00000000004005b6      9               memset (&c, 0x55, 128);
(gdb) stepi
0x00000000004005bb      9               memset (&c, 0x55, 128);
(gdb) stepi
0x00000000004005be      9               memset (&c, 0x55, 128);
(gdb) stepi
0x0000000000400470 in memset@plt ()
(gdb) step
Single stepping until exit from function memset@plt,
which has no line number information.
foo () at Test16SigSegvAccessInvalidHeapAddr03.c:10
10      }
(gdb) stepi
0x00000000004005c4      10      }
(gdb) stepi
0x00000000004005c8      10      }
(gdb) stepi
0x00000000004005d1      10      }
(gdb) stepi
0x00000000004005d3      10      }
(gdb) disassemble
Dump of assembler code for function foo:0x0000000000400596 <+0>:     push   %rbp0x0000000000400597 <+1>:     mov    %rsp,%rbp0x000000000040059a <+4>:     sub    $0x10,%rsp0x000000000040059e <+8>:     mov    %fs:0x28,%rax0x00000000004005a7 <+17>:    mov    %rax,-0x8(%rbp)0x00000000004005ab <+21>:    xor    %eax,%eax0x00000000004005ad <+23>:    lea    -0x9(%rbp),%rax0x00000000004005b1 <+27>:    mov    $0x80,%edx0x00000000004005b6 <+32>:    mov    $0x55,%esi0x00000000004005bb <+37>:    mov    %rax,%rdi0x00000000004005be <+40>:    call   0x400470 <memset@plt>0x00000000004005c3 <+45>:    nop0x00000000004005c4 <+46>:    mov    -0x8(%rbp),%rax0x00000000004005c8 <+50>:    xor    %fs:0x28,%rax0x00000000004005d1 <+59>:    je     0x4005d8 <foo+66>
=> 0x00000000004005d3 <+61>:    call   0x400460 <__stack_chk_fail@plt>0x00000000004005d8 <+66>:    leave0x00000000004005d9 <+67>:    ret
End of assembler dump.

 

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/21093.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式笔试面试刷题(day16)

文章目录 前言一、PWM波形的占空比计算公式是什么&#xff1f;二、ADC和DAC在嵌入式系统中的应用场景有哪些&#xff1f;三、watchdog定时器的作用及其在系统中的使用是什么&#xff1f;四、JTAG接口在嵌入式开发中的作用是什么&#xff1f;五、实时操作系统(RTOS)的任务调度策…

嵌入式工程师人生提质的十大成长型思维分享

大家好,作为一名嵌入式开发者,很多时候,需要考虑个人未来的发展,人生旅途复杂多变,时常面临各种各样的挑战。如何在这个复杂多变的社会中稳步向前,不断成长,成为每个人都应该思考的问题。实际上,思维方式的差异决定我们应对挑战的能力与成长的速度。 第一:寻找自我坐…

HNCTF2022 REVERSE

[HNCTF 2022 WEEK2]esy_flower 简单花指令 Nop掉 然后整段u c p然后就反汇编 可能反编译的不太对&#xff0c;&#xff0c;看了别人的wp就是ida反编译的有问题 #include<stdio.h> #include<string.h> int main() {int i,j;char ch[]"c~scvdzKCEoDEZ[^roDICU…

NumPy应用(二)

numpy高效的处理数据&#xff0c;提供数组的支持&#xff0c; python 默认没有数组。 pandas 、 scipy 、 matplotlib 都依赖 numpy 。 pandas主要用于数据挖掘&#xff0c;探索&#xff0c;分析 maiplotlib用于作图&#xff0c;可视化 scipy进行数值计算&#xff0c;如&…

微软远程连接工具:Microsoft Remote Desktop for Mac 中文版

Microsoft Remote Desktop 是一款由微软开发的远程桌面连接软件&#xff0c;它允许用户从远程地点连接到远程计算机或虚拟机&#xff0c;并在远程计算机上使用桌面应用程序和文件。 下载地址&#xff1a;https://www.macz.com/mac/5458.html?idOTI2NjQ5Jl8mMjcuMTg2LjEyNi4yMz…

C++进阶之AVL树+模拟实现

目录 目录 一、AVL树的基本概念 1.1 基本概念 二、AVL树的模拟实现 2.1 AVL树节点的定义 2.2 插入操作 2.3 旋转操作 2.4 具体实现 一、AVL树的基本概念 1.1 基本概念 二叉搜索树虽可以缩短查找的效率&#xff0c;但如果数据有序或接近有序二叉搜索树将退化为单支树&…

山东大学软件学院项目实训-创新实训-基于大模型的旅游平台(二十四)- 微服务(4)

目录 8. http客户端Feign 8.1 feign远程调用 8.2 feign自定义配置 8.3 feign性能优化 8.4 feign最佳实践 8. http客户端Feign 8.1 feign远程调用 RestTemplate存在的问题 &#xff1a; 代码可读性差 参数复杂URL难以维护 Feign是声明式的http客户端 使用步骤 &#xf…

飞书API(11):阿里云MaxCompute分区表入库

一、引入 前面入库阿里云 MaxCompute 的数据都是读取之后直接写入&#xff0c;保留数据最新的状态&#xff0c;如果我要保留历史的状态&#xff0c;怎么办呢&#xff1f;MaxCompute 表有一个分区功能&#xff0c;可以自行定义分区。我们可以使用 MaxCompute 表的分区功能&…

Python | A + B问题||

既然是持续性的输入&#xff0c;说明在循环做输入n这个操作&#xff0c;那我们就需要使用到上一节中使用的while while True:try:# 将输入的 N 转换成整数N int(input())except:break 列表 for循环&#xff1a;可遍历列表、字符串、内置的range()函数 for item in list:# …

生产问题临时解决方案

临时解决方案的目标是迅速恢复系统的可用性&#xff0c;确保服务不中断&#xff0c;同时为深入分析和解决根本问题争取时间。以下是一些常见的临时解决方案&#xff1a; 1. 重启服务 重启应用服务器&#xff1a;很多时候&#xff0c;重启可以释放资源&#xff0c;缓解瞬时压力…

Express 框架

1. Express 框架的功能 Express 框架提供了丰富的功能和工具&#xff0c;使开发者能够更轻松地构建 Web 应用程序。以下是 Express 框架的一些主要功能&#xff1a; 路由功能&#xff1a;Express 框架提供了简单易用的路由功能&#xff0c;可以根据不同的 URL 请求来执行不同…

远程自动锁定平面

目录 Ubuntu 系统上 方法一&#xff1a;使用 SSH 重新连接 方法二&#xff1a;解锁当前会话 方法三&#xff1a;通过 SSH 解锁会话 方法四&#xff1a;禁用自动锁屏&#xff08;如果合适&#xff09; windows系统 方法三&#xff1a;修改组策略设置 Ubuntu 系统上 远程…

重生之我要精通JAVA--第七周笔记

文章目录 IO流字符流字符流原理解析flush和close方法 文件拷贝代码文件加密解密修改文件中的数据 缓冲流字节缓冲流字符缓冲流例题 转换流序列化流序列化流/对象操作输出流 反序列化流序列化流/反序列化流的细节汇总打印流字节打印流字符打印流 解压缩流压缩流Commons-io常见方…

网络空间安全数学基础·环

4.1 环与子环 &#xff08;理解&#xff09; 4.2 整环、除环、域 &#xff08;熟练&#xff09; 4.3 环的同态、理想 &#xff08;掌握&#xff09; 4.1 环与子环 定义&#xff1a;设R是一非空集合&#xff0c;在R上定义了加法和乘法两种代数运算&#xff0c; 分别记为ab和a…

122.买卖股票的最佳时机Ⅱ

思考 把题目抽象 1 2 3 4 5 1 2 3 4 5 低买高卖&#xff0c;如果递增可以先不卖&#xff0c;但是一旦递减&#xff0c;比如第五天和第六天&#xff0c;降低了&#xff0c;应该在第五天卖&#xff0c;第六天买 注意特殊情况&#xff0c;如果 1 2 3 4 5 这个没有1中的改变&…

java收徒、java面试辅导、java辅导、java就业辅导

&#x1f497;博主介绍&#xff1a;✌全网粉丝1W,CSDN作者、博客专家、全栈领域优质创作者&#xff0c;博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌&#x1f497; &#x1f31f;文末获取源码数据库&#x1f31f; 感兴趣的可以先收藏起来&#xff0c;还…

MMPose-RTMO推理详解及部署实现(下)

目录 前言一、RTMO推理(Python)1. RTMO预测2. RTMO预处理3. RTMO后处理4. RTMO推理 二、RTMO推理(C)1. ONNX导出2. RTMO预处理3. RTMO后处理4. RTMO推理 三、RTMO部署1. 源码下载2. 环境配置2.1 配置CMakeLists.txt2.2 配置Makefile 3. ONNX导出4. engine生成5. 源码修改6. 运行…

zigbee浅谈

zigbee技术是一种低速低功耗&#xff0c;短距离无线通信技术&#xff0c;主要应用于智能家居、工业自动化、农业互联网、健康医疗、环境监测等。和蓝牙的对比&#xff1a; 两者都使用2.4GHz频段&#xff0c;最大传输距离可达100米&#xff0c;可实现点对点&#xff0c;点对多点…

HCP;IDA;ABIDE(孤独症)磁共振数据库下载

ABIDE https://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html 根据研究目的和研究目的选择不同站点的数据—不同站点的数据 HCP-IDE https://ida.loni.usc.edu/project_info.jsp 点击下载-图像集合 选择研究对象 全选-下载

git本地仓库与远程仓库关联

背景 当我们在本地创建了一个项目以后&#xff0c;想要推送到远程分支&#xff0c;可以按照如下的步骤进行操作 步骤 1、创建远程的仓库 2、本地初始化仓库&#xff1a;git init 3、关联远程分支&#xff1a;git remote add origin https://xxxxx.git 4、比如远程分支有.…