随机森林算法教程(个人总结)

背景

随机森林(Random Forest)是一种集成学习方法,主要用于分类和回归任务。它通过构建多个决策树并将其结果进行集成,提升模型的准确性和鲁棒性。随机森林在处理高维数据和防止过拟合方面表现出色,是一种强大的机器学习算法。

随机森林的基本思想

随机森林由多个决策树组成,每棵树在训练时都从原始数据集进行有放回的随机抽样(即Bootstrap抽样),并在每个节点分裂时随机选择部分特征进行最佳分裂。最终结果通过对所有树的预测结果进行投票(分类)或平均(回归)来确定。

随机森林的优缺点

优点

  1. 高准确性:通过集成多棵树,减少了单棵树的过拟合风险,提高了模型的准确性。
  2. 鲁棒性强:对异常值和噪声不敏感,能够处理高维数据。
  3. 特征重要性评估:能够提供特征重要性评估,有助于理解模型和数据。

缺点

  1. 训练时间较长:由于需要训练多棵树,训练时间相对较长。
  2. 内存消耗大:存储多棵树需要较大的内存空间。
  3. 黑箱模型:尽管可以评估特征重要性,但具体决策过程难以解释。

随机森林的实现

算法步骤

  1. Bootstrap抽样:从原始数据集中随机抽取多个样本子集,每个子集用于训练一棵决策树。
  2. 特征选择:在每个节点分裂时,随机选择部分特征进行最佳分裂。
  3. 决策树构建:根据选定的样本子集和特征,构建多棵决策树。
  4. 结果集成:对于分类任务,通过对所有树的预测结果进行投票决定最终分类结果;对于回归任务,通过对所有树的预测结果进行平均决定最终回归结果。

算法实现

下面是一个使用Python和Scikit-learn库实现随机森林的示例。

1. 数据准备

我们使用一个示例数据集(如Iris数据集)进行演示。

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
2. 构建随机森林模型
from sklearn.ensemble import RandomForestClassifier# 创建随机森林分类器
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)# 训练模型
rf_classifier.fit(X_train, y_train)
3. 模型预测与评估
from sklearn.metrics import accuracy_score, classification_report# 预测测试集
y_pred = rf_classifier.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"准确率: {accuracy}")# 输出分类报告
print(classification_report(y_test, y_pred))
4. 特征重要性评估
import numpy as np
import matplotlib.pyplot as plt# 获取特征重要性
feature_importances = rf_classifier.feature_importances_# 绘制特征重要性条形图
features = iris.feature_names
indices = np.argsort(feature_importances)[::-1]plt.figure(figsize=(10, 6))
plt.title("Feature Importances")
plt.bar(range(X.shape[1]), feature_importances[indices], align="center")
plt.xticks(range(X.shape[1]), [features[i] for i in indices])
plt.show()

高级使用技巧

超参数调优

随机森林有多个超参数可以调节,如n_estimators(树的数量)、max_depth(树的最大深度)、min_samples_split(内部节点再划分所需最小样本数)等。可以通过网格搜索(Grid Search)或随机搜索(Random Search)进行超参数调优。

from sklearn.model_selection import GridSearchCV# 定义参数网格
param_grid = {'n_estimators': [50, 100, 200],'max_depth': [None, 10, 20, 30],'min_samples_split': [2, 5, 10]
}# 网格搜索
grid_search = GridSearchCV(estimator=rf_classifier, param_grid=param_grid, cv=5, n_jobs=-1, verbose=2)
grid_search.fit(X_train, y_train)# 输出最佳参数
print(f"最佳参数: {grid_search.best_params_}")
处理不平衡数据

对于不平衡数据集,可以通过调整类权重或采用欠采样/过采样方法来改善模型性能。

# 调整类权重
rf_classifier_balanced = RandomForestClassifier(n_estimators=100, class_weight='balanced', random_state=42)
rf_classifier_balanced.fit(X_train, y_train)
并行化处理

随机森林的训练过程可以并行化处理,以提高训练速度。可以通过设置n_jobs参数实现。

# 并行训练
rf_classifier_parallel = RandomForestClassifier(n_estimators=100, n_jobs=-1, random_state=42)
rf_classifier_parallel.fit(X_train, y_train)

详细解释

1. Bootstrap抽样

Bootstrap抽样是一种有放回的随机抽样方法。在构建每棵决策树时,从原始数据集中随机抽取多个样本子集,每个样本子集的大小与原始数据集相同,但可能包含重复样本。这种方法可以增加模型的多样性,从而提高整体模型的泛化能力。

2. 特征选择

在构建决策树的过程中,每个节点分裂时都会随机选择部分特征进行最佳分裂。这种随机选择特征的方法可以减少特征之间的相关性,进一步增加模型的多样性,减少过拟合风险。

3. 决策树构建

每棵决策树根据选定的样本子集和特征进行构建。决策树的构建过程包括以下步骤:

  1. 选择最佳分裂点:根据选定的特征,选择能够最大程度减少不纯度的分裂点。
  2. 递归分裂:对每个分裂后的子集,重复上述步骤,直到达到停止条件(如最大深度、最小样本数等)。

4. 结果集成

随机森林通过集成多棵决策树的预测结果来确定最终结果。对于分类任务,通过对所有树的预测结果进行投票决定最终分类结果;对于回归任务,通过对所有树的预测结果进行平均决定最终回归结果。

超参数调优

随机森林有多个超参数可以调节,以提高模型性能。常见的超参数包括:

  • n_estimators:森林中树的数量。树的数量越多,模型越稳定,但训练时间也越长。
  • max_depth:每棵树的最大深度。深度越大,树越复杂,可能会过拟合。
  • min_samples_split:内部节点再划分所需的最小样本数。样本数越大,树越简单,可能会欠拟合。
  • min_samples_leaf:叶子节点所需的最小样本数。样本数越大,树越简单,可能会欠拟合。
  • max_features:分裂时考虑的最大特征数。特征数越多,树越复杂,可能会过拟合。

处理不平衡数据

对于类别分布不平衡的数据集,可以通过调整类权重或采用欠采样/过采样方法来改善模型性能。调整类权重可以通过class_weight参数实现,设置为balanced时,模型会根据类别频率自动调整权重。欠采样和过采样可以通过手动调整数据集实现。

并行化处理

随机森林的训练过程可以并行化处理,以提高训练速度。可以通过设置n_jobs参数来控制并行线程数,n_jobs=-1表示使用所有可用的CPU核心进行并行计算。

随机森林应用实例

实例1:Iris数据集分类

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
import matplotlib.pyplot as plt
import numpy as np# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建随机森林分类器
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)# 训练模型
rf_classifier.fit(X_train, y_train)# 预测测试集
y_pred = rf_classifier.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"准确率: {accuracy}")# 输出分类报告
print(classification_report(y_test, y_pred))# 获取特征重要性
feature_importances = rf_classifier.feature_importances_# 绘制特征重要性条形图
features = iris.feature_names
indices = np.argsort(feature_importances)[::-1]plt.figure(figsize=(10, 6))
plt.title("Feature Importances")
plt.bar(range(X.shape[1]), feature_importances[indices], align="center")
plt.xticks(range(X.shape[1]), [features[i] for i in indices])
plt.show()

实例2:乳腺癌数据集分类

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
import matplotlib.pyplot as plt
import numpy as np# 加载数据集
cancer = load_breast_cancer()
X = cancer.data
y = cancer.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建随机森林分类器
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)# 训练模型
rf_classifier.fit(X_train, y_train)# 预测测试集
y_pred = rf_classifier.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"准确率: {accuracy}")# 输出分类报告
print(classification_report(y_test, y_pred))# 获取特征重要性
feature_importances = rf_classifier.feature_importances_# 绘制特征重要性条形图
features = cancer.feature_names
indices = np.argsort(feature_importances)[::-1]plt.figure(figsize=(10, 6))
plt.title("Feature Importances")
plt.bar(range(X.shape[1]), feature_importances[indices], align="center")
plt.xticks(range(X.shape[1]), [features[i] for i in indices])
plt.show()

结论

随机森林是一种强大且灵活的机器学习算法,适用于多种分类和回归任务。通过集成多个决策树,随机森林能够有效地减少过拟合,提高模型的准确性和稳定性。在实际应用中,可以通过超参数调优、处理不平衡数据和并行化处理等方法进一步提升模型性能。

通过本教程的详细介绍和代码示例,希望您对随机森林算法有了更深入的理解,并能够在实际项目中应用这些技术。如果有更多问题或需要进一步的帮助,请随时与我联系。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/18921.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何在中国网上发布文章

随着互联网的迅猛发展,网上发布文章已经成为一种重要的传播方式。而在中国,作为世界上最大的互联网市场,如何在中国网上发布文章成为了许多人关注的焦点。媒介多多网发稿平台作为一个专业的发稿平台,为广大作者提供了很好的发布文…

计算机系统基础实验三(解了但尽量理解)

一.准备阶段 1、下载好32位的实验代码后,将文件解压缩并且通过共享文件夹操作将文件添加到虚拟机中,双击查看bomb.c代码,将c代码完整看了一遍,发现看这里的c代码是无从下手的,代码中只含有主函数,触发炸弹…

KITTI数据中pose含义

Folder ‘poses’: The folder ‘poses’ contains the ground truth poses (trajectory) for the first 11 sequences. This information can be used for training/tuning your method. Each file xx.txt contains a N x 12 table, where N is the number of frames of this …

(二刷)代码随想录第17天|● 110.平衡二叉树 ● 257. 二叉树的所有路径 ● 404.左叶子之和

110.平衡二叉树 math.abs指的是绝对值;这棵树的左右子树的高度差小于1的时候,同时该树的左右子树都是平衡二叉树的时候,这棵树才是平衡二叉树; class Solution {public boolean isBalanced(TreeNode root) {return getHeight(ro…

AI 画图真刺激,手把手教你如何用 ComfyUI 来画出刺激的图

目前 AI 绘画领域的产品非常多,比如 Midjourney、Dalle3、Stability AI 等等,这些产品大体上可以分为两类: 模型与产品深度融合:比如 Midjourney、Dalle3 等等。模型与产品分离:比如 SD Web UI、ComfyUI 等等。 对于…

宏基因组分析流程(Metagenomic workflow)202405|持续更新

Logs 增加R包pctax内的一些帮助上游分析的小脚本(2024.03.03)增加Mmseqs2用于去冗余,基因聚类的速度非常快,且随序列量线性增长(2024.03.12)更新全文细节(2024.05.29) 注意&#x…

LeetCode2336无限集中的最小数字

题目描述 现有一个包含所有正整数的集合 [1, 2, 3, 4, 5, …] 。实现 SmallestInfiniteSet 类:SmallestInfiniteSet() 初始化 SmallestInfiniteSet 对象以包含 所有 正整数。int popSmallest() 移除 并返回该无限集中的最小整数。void addBack(int num) 如果正整数 …

如何让一个普通用户可以读写某个目录

循环设置这个目录以及上面每一级目录的读取和执行权限 sudo chmod -R orx /opt/software/yourdir 然后设置指定用户user1可以读写这个目录 sudo setfacl -Rm u:user1:rwx /opt/software/yourdir 读取acl sudo getfacl -R /opt/software/yourdir -R 是循环读取子目录和文件的意思…

mac m1安装homebrew管理工具(brew命令)完整流程

背景 因为mac上的brew很久没用了,版本非常旧,随着mac os的更新,本机的homebrew大部分的功能都无法使用,幸好过去通过brew安装的工具比较少,于是决定重新安装一遍brew。 卸载旧版brew 法一:通过使用线上…

【面试】谈谈你对jvm的认识

目录 1. 说明2. 定义3. 特性3.1 平台无关性3.2 基于栈的虚拟机3.3 符号引用3.4 垃圾回收机制 4. 工作原理5. 调优策略 1. 说明 1.是Java技术的核心组件之一。2.负责运行Java程序。3.对JVM的认识,包括其定义、特性、工作原理和调优策略等方面的内容。 2. 定义 1.J…

力扣:104. 二叉树的最大深度

104. 二叉树的最大深度 给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:3示例 2: 输入&#xff1a…

如何让centOS开机后自动执行某些命令

可以通过创建一个 systemd 服务单元文件来实现 centOS 开机后自动执行这几句命令。下面是具体步骤: 创建一个 shell 脚本,包含你要执行的命令: #!/bin/bash source /opt/server/Search-Server/venv/bin/activate cd /opt/server/Search-Serve…

C++语言·list链表(下)

还是之前说的,因为要写模板,为了避免链接出现问题,我们将所有内容都写到一个文件中去。首先就是画出链表的框架 链表本身只需要一个头节点就足以找到整条链表,而需要它拼接的节点我们再写一个模板。而我们知道list是一个带头双向循…

Verilog HDL基础知识(一)

引言:本文我们介绍Verilog HDL的基础知识,重点对Verilog HDL的基本语法及其应用要点进行介绍。 1. Verilog HDL概述 什么是Verilog?Verilog是IEEE标准的硬件描述语言,一种基于文本的语言,用于描述最终将在硬件中实现…

数据库设计实例---学习数据库最重要的应用之一

一、引言【可忽略】 在学习“数据库系统概述”这门课程时,我一直很好奇,这样一门必修课,究竟教会了我什么呢? 由于下课后,,没有拓展自己的眼界,上课时又局限于课堂上老师的讲课水平,…

探索数组处理:奇数的筛选与替换

新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一、数组中的奇数筛选 二、将奇数替换为负一 总结 一、数组中的奇数筛选 在处理数组数据时…

自定义窗口事件循环系统

1.定义事件类型,mouse,wheel,drag,view。已处理的事件,accept需设置为true,防止重叠热区继续穿透。记录事件生成时间,全局位置和当前帧窗口下位置。 2.定义事件响应系统interactionSystem&…

【Qt】初识

一、使用Label显示Hello World 1.ui设计 可以在Qt Designer中拖拽方式进行创建 2.代码方式 在myqwidget.cpp文件中添加下列代码 二、对象树 我们在堆上创建了QLabel类的对象。但是我们没有去delete,这样会产生内存泄漏吗? 答案是不会。label对象会在…

ChatGPT的基本原理是什么?又该如何提高其准确性?

在深入探索如何提升ChatGPT的准确性之前,让我们先来了解一下它的工作原理吧。ChatGPT是一种基于深度学习的自然语言生成模型,它通过预训练和微调两个关键步骤来学习和理解自然语言。 在预训练阶段,ChatGPT会接触到大规模的文本数据集&#x…

输入输出(1)——C++的输入输出概述

目录 一、C的输入输出 (一) C的输入输出 (二)C语言的scanf和printf 二、C的输入输出流 (一) iostream类库中有关的类 (二) iostream.h头文件的流对象和重载运算符 一、C的输入输出 (一) C的输入输出 之前用到的输入输出,都是以终端…