基于高光谱数据集的创新点实现-高斯核函数卷积神经网络

一、高光谱数据集简介

1.1 数据集简介

数据集链接在这:高光谱数据集(.mat.csv)-科研学术
数据集包含下面三个文件:
在这里插入图片描述
文件中包含.mat与.csv,145x145x220,
其实主要使用avirissub.csv文件,在代码上只是将mat文件转成了csv文件。具体avirissub.csv如下:145x145x220,每行代表一个数据,每行前220列代表特征,最后一列代表标签值,共17类标签。
在这里插入图片描述

1.2.软件环境与配置:

安装TensorFlow2.12.0版本。指令如下:

 pip install tensorflow==2.12.0

这个版本最关键,其他库,以此安装即可。

二、基线模型实现:

该代码旨在通过构建和训练卷积神经网络(CNN)模型来进行分类任务。下面是代码的详细解释和网络模型结构的说明:

2.1. 环境设置和数据加载

import pandas as pd
from tensorflow import keras
from tensorflow.keras.layers import Dense, Dropout, Conv1D, MaxPooling1D, Flatten
from tensorflow.keras.models import Sequential
from tensorflow.keras import optimizers
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from keras.utils import np_utils
import scipy.io as sio
import osos.environ["CUDA_VISIBLE_DEVICES"] = "0"
np.random.seed(42)num_epoch = []
result_mean = []
result_std_y = []
result_std_w = []
  • 引入所需库,包括Pandas、TensorFlow、Keras、Scipy等。
  • 设置环境变量以使用指定的GPU设备。
  • 设置随机种子以确保结果可重现。

2.2. 数据加载和预处理

data = sio.loadmat('D:/python_test/data/avirissub.mat')
data_L = sio.loadmat('D:/python_test/data/avirissub_gt.mat')print(sio.whosmat('D:/python_test/data/avirissub.mat'))
print(sio.whosmat('D:/python_test/data/avirissub_gt.mat'))data_D = data['x92AV3C']
data_L = data_L['x92AV3C_gt']data_D_flat = data_D.reshape(-1, data_D.shape[-1])
print(data_D_flat.shape)data_combined = pd.DataFrame(data_D_flat)
data_combined['label'] = data_L.flatten()
data_combined.to_csv('D:/python_test/data/avirissub.csv', index=False, header=False)data = pd.read_csv('D:/python_test/data/avirissub.csv', header=None)
data = data.values
data_D = data[:, :-1]
data_L = data[:, -1]
print(data_D.shape)data_D = data_D / np.max(np.max(data_D))
data_D_F = data_D / np.max(np.max(data_D))data_train, data_test, label_train, label_test = train_test_split(data_D_F, data_L, test_size=0.8, random_state=42, stratify=data_L)data_train = data_train.reshape(data_train.shape[0], data_train.shape[1], 1)
data_test = data_test.reshape(data_test.shape[0], data_test.shape[1], 1)print(np.unique(label_train))label_train = np_utils.to_categorical(label_train,  None)
label_test = np_utils.to_categorical(label_test,  None)
  • 加载数据和标签,查看文件中的键和形状。
  • 数据预处理:将多维数据展平成二维数组,合并数据和标签,保存为CSV文件,并从CSV文件中读取数据。
  • 对特征数据进行归一化。
  • 划分训练集和测试集,并调整数据形状以与Conv1D层兼容。
  • 对标签数据进行独热编码。

2.3. 定义卷积神经网络模型

def CNN(num):result = []num_epoch.append(num)for i in range(3):time_S = time.time()model = Sequential()model.add(Conv1D(filters=6, kernel_size=8, input_shape=inputShape, activation='relu', name='spec_conv1'))model.add(MaxPooling1D(pool_size=2, name='spec_pool1'))model.add(Conv1D(filters=12, kernel_size=7, activation='relu', name='spec_conv2'))model.add(MaxPooling1D(pool_size=2, name='spec_pool2'))model.add(Conv1D(filters=24, kernel_size=8, activation='relu', name='spec_conv3'))model.add(MaxPooling1D(pool_size=2, name='spec_pool3'))model.add(Flatten(name='spe_fla'))model.add(Dense(256, activation='relu', name='spe_De'))model.add(Dense(17, activation='softmax'))adam = optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8)model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])filepath = "../model/model_spe(5%).h5"checkpointer = ModelCheckpoint(filepath, monitor='val_acc', save_weights_only=False, mode='max', save_best_only=True, verbose=0)callback = [checkpointer]reduce_lr = ReduceLROnPlateau(monitor='val_acc', factor=0.9, patience=10, verbose=0, mode='auto', epsilon=0.000001, cooldown=0, min_lr=0)history = model.fit(data_train, label_train, epochs=num, batch_size=5, shuffle=True, validation_split=0.1, verbose=0)scores = model.evaluate(data_test, label_test, verbose=0)print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))result.append(scores[1] * 100)time_E = time.time()print("costTime:", time_E - time_S, 's')print(result)result_mean.append(np.mean(result))print("均值是:%.4f" % np.mean(result))result_std_y.append(np.std(result))print("标准差(有偏)是:%.4f" % np.std(result))result_std_w.append(np.std(result, ddof=1))print("标准差(无偏)是:%.4f" % np.std(result, ddof=1))
  • 定义CNN函数,构建并训练卷积神经网络模型。
  • 网络模型结构包括:
    • Conv1D 层:一维卷积层,用于提取特征。共三个卷积层,每层有不同的过滤器数量和卷积核大小。
    • MaxPooling1D 层:最大池化层,用于下采样。每个卷积层后都有一个池化层。
    • Flatten 层:将多维特征图展平成一维。
    • Dense 层:全连接层,包含256个神经元,激活函数为ReLU。
    • 最后一层 Dense 层:输出层,包含17个神经元,对应17个类别,激活函数为Softmax。

2.4. 模型训练和评估

if __name__ == '__main__':CNN(5)
  • 调用CNN函数并设置迭代次数为5。

完整的基线模型版本代码如下

from __future__ import print_function
import pandas as pd
from tensorflow import keras
from tensorflow.keras.layers import Dense, Dropout, Conv1D, MaxPooling1D, Flatten
from tensorflow.keras.models import Sequential
from tensorflow.keras import optimizers
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
from keras.utils import np_utils
import scipy.io as sio
import os# 设置环境变量,指定使用的 GPU 设备
os.environ["CUDA_VISIBLE_DEVICES"] = "0"# 设置随机种子以便实验结果可重现
np.random.seed(42)# 初始化存储结果的列表
num_epoch = []
result_mean = []
result_std_y = []
result_std_w = []# 加载数据
data = sio.loadmat('D:/python_test/data/avirissub.mat')  # 加载数据
data_L = sio.loadmat('D:/python_test/data/avirissub_gt.mat')  # 加载标签# 查看.mat文件中包含的键和它们的形状
print(sio.whosmat('D:/python_test/data/avirissub.mat'))
print(sio.whosmat('D:/python_test/data/avirissub_gt.mat'))# 提取数据和标签
data_D = data['x92AV3C']
data_L = data_L['x92AV3C_gt']# 将多维数据展平成二维数组
data_D_flat = data_D.reshape(-1, data_D.shape[-1])
print(data_D_flat.shape)
# 将数据和标签合并
data_combined = pd.DataFrame(data_D_flat)
data_combined['label'] = data_L.flatten()# 保存为.csv文件
data_combined.to_csv('D:/python_test/data/avirissub.csv', index=False, header=False)# 从 CSV 文件中读取数据
data = pd.read_csv('D:/python_test/data/avirissub.csv', header=None)  # 14 类可以用于分类
data = data.values
data_D = data[:, :-1]  # 提取特征 提取了 data 矩阵的所有行和除了最后一列之外的所有列,这就是特征数据。
data_L = data[:, -1]  # 提取标签 提取了 data 矩阵的所有行的最后一列,这就是标签数据
print(data_D.shape)  # 打印特征数据的形状# 对特征数据进行归一化
data_D = data_D / np.max(np.max(data_D))
data_D_F = data_D / np.max(np.max(data_D))# 将数据划分为训练集和测试集
data_train, data_test, label_train, label_test = train_test_split(data_D_F, data_L, test_size=0.8, random_state=42,stratify=data_L)
# 将数据重新调整为与 Conv1D 层兼容的形状
data_train = data_train.reshape(data_train.shape[0], data_train.shape[1], 1)
data_test = data_test.reshape(data_test.shape[0], data_test.shape[1], 1)# 打印标签数据的唯一值,确保它们的范围是正确的
print(np.unique(label_train))# 根据类来自动定义独热编码
label_train = np_utils.to_categorical(label_train,  None)
label_test = np_utils.to_categorical(label_test,  None)inputShape = data_train[0].shape  # 输入形状import timedef CNN(num):result = []num_epoch.append(num)# for i in range(50):for i in range(3):time_S = time.time()model = Sequential()# 定义模型结构model.add(Conv1D(filters=6, kernel_size=8, input_shape=inputShape, activation='relu', name='spec_conv1'))model.add(MaxPooling1D(pool_size=2, name='spec_pool1'))#model.add(Conv1D(filters=12, kernel_size=7, activation='relu', name='spec_conv2'))model.add(MaxPooling1D(pool_size=2, name='spec_pool2'))#model.add(Conv1D(filters=24, kernel_size=8, activation='relu', name='spec_conv3'))model.add(MaxPooling1D(pool_size=2, name='spec_pool3'))# model.add(Conv1D(filters=48, kernel_size=10, activation='relu', name='spec_conv4'))# model.add(MaxPooling1D(pool_size=2, name='spec_pool4'))model.add(Flatten(name='spe_fla'))model.add(Dense(256, activation='relu', name='spe_De'))# model.add(Dropout(0.5,name = 'drop'))model.add(Dense(17, activation='softmax'))# 设置优化器和损失函数,并编译模型adam = optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8)model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])filepath = "../model/model_spe(5%).h5"checkpointer = ModelCheckpoint(filepath, monitor='val_acc', save_weights_only=False, mode='max',save_best_only=True, verbose=0)callback = [checkpointer]reduce_lr = ReduceLROnPlateau(monitor='val_acc', factor=0.9, patience=10, verbose=0, mode='auto',epsilon=0.000001,cooldown=0, min_lr=0)# 训练模型并计算评分history = model.fit(data_train, label_train, epochs=num, batch_size=5, shuffle=True, validation_split=0.1,verbose=0)scores = model.evaluate(data_test, label_test, verbose=0)print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))# 保存模型result.append(scores[1] * 100)time_E = time.time()print("costTime:", time_E - time_S, 's')print(result)result_mean.append(np.mean(result))print("均值是:%.4f" % np.mean(result))result_std_y.append(np.std(result))print("标准差(有偏)是:%.4f" % np.std(result))result_std_w.append(np.std(result, ddof=1))print("标准差(无偏)是:%.4f" % np.std(result, ddof=1))if __name__ == '__main__':# 调用 CNN 函数并设置迭代次数为 50# CNN(50)CNN(5)

三、创新点实现:

这段代码在原有基础上引入了一些创新点,主要包括自定义卷积层和自定义回调函数。下面是具体创新点的详细解释:

3.1. 高斯核函数和自定义卷积层

高斯核函数
def gaussian_kernel(x, y, sigma=1.0):return tf.exp(-tf.reduce_sum(tf.square(x - y), axis=-1) / (2 * sigma ** 2))
  • 定义高斯核函数,用于计算输入片段与卷积核之间的相似性。
自定义卷积层
class GaussianKernelConv1D(Layer):def __init__(self, filters, kernel_size, sigma=1.0, **kwargs):super(GaussianKernelConv1D, self).__init__(**kwargs)self.filters = filtersself.kernel_size = kernel_sizeself.sigma = sigmadef build(self, input_shape):self.kernel = self.add_weight(name='kernel',shape=(self.kernel_size, int(input_shape[-1]), self.filters),initializer='uniform',trainable=True)super(GaussianKernelConv1D, self).build(input_shape)def call(self, inputs):output = []for i in range(inputs.shape[1] - self.kernel_size + 1):slice = inputs[:, i:i+self.kernel_size, :]slice = tf.expand_dims(slice, -1)kernel = tf.expand_dims(self.kernel, 0)similarity = gaussian_kernel(slice, kernel, self.sigma)output.append(tf.reduce_sum(similarity, axis=2))return tf.stack(output, axis=1)
  • GaussianKernelConv1D 是一个自定义的一维卷积层,使用高斯核函数来计算相似性。
  • build 方法中定义了卷积核,并设置为可训练参数。
  • call 方法中实现了卷积操作,通过滑动窗口方式计算输入片段和卷积核之间的相似性,并累加这些相似性值。

3.2. 自定义回调函数

自定义回调函数用于在每个 epoch 结束时输出训练信息
class TrainingProgressCallback(Callback):def on_epoch_end(self, epoch, logs=None):logs = logs or {}print(f"Epoch {epoch + 1}/{self.params['epochs']}, Loss: {logs.get('loss')}, Accuracy: {logs.get('accuracy')}, "f"Val Loss: {logs.get('val_loss')}, Val Accuracy: {logs.get('val_accuracy')}")
  • TrainingProgressCallback 是一个自定义回调函数,用于在每个 epoch 结束时输出训练进度,包括损失和准确率。

3.3. 模型构建、训练和评估

CNN 函数
def CNN(num):result = []num_epoch.append(num)for i in range(3):time_S = time.time()model = Sequential()# 定义模型结构model.add(GaussianKernelConv1D(filters=6, kernel_size=8, input_shape=inputShape, name='spec_conv1'))model.add(MaxPooling1D(pool_size=2, name='spec_pool1'))model.add(GaussianKernelConv1D(filters=12, kernel_size=7, name='spec_conv2'))model.add(MaxPooling1D(pool_size=2, name='spec_pool2'))model.add(GaussianKernelConv1D(filters=24, kernel_size=8, name='spec_conv3'))model.add(MaxPooling1D(pool_size=2, name='spec_pool3'))model.add(Flatten(name='spe_fla'))model.add(Dense(256, activation='relu', name='spe_De'))model.add(Dense(17, activation='softmax'))# 设置优化器和损失函数,并编译模型adam = optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8)model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])filepath = "../model/model_spe(5%).h5"checkpointer = ModelCheckpoint(filepath, monitor='val_accuracy', save_weights_only=False, mode='max',save_best_only=True, verbose=0)callback = [checkpointer, TrainingProgressCallback()]reduce_lr = ReduceLROnPlateau(monitor='val_accuracy', factor=0.9, patience=10, verbose=0, mode='auto',min_delta=0.000001,cooldown=0, min_lr=0)callback.append(reduce_lr)# 训练模型并计算评分history = model.fit(data_train, label_train, epochs=num, batch_size=5, shuffle=True, validation_split=0.1,verbose=1, callbacks=callback)scores = model.evaluate(data_test, label_test, verbose=0)print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1] * 100))result.append(scores[1] * 100)time_E = time.time()print("costTime:", time_E - time_S, 's')print(result)result_mean.append(np.mean(result))print("均值是:%.4f" % np.mean(result))result_std_y.append(np.std(result))print("标准差(有偏)是:%.4f" % np.std(result))result_std_w.append(np.std(result, ddof=1))print("标准差(无偏)是:%.4f" % np.std(result, ddof=1))
  • CNN 函数中,模型结构与之前类似,但卷积层替换为自定义的 GaussianKernelConv1D 层。
  • 使用 TrainingProgressCallback 在每个 epoch 结束时输出训练进度。
  • 训练模型并评估其性能。

四、总结

相对于原代码,新的代码主要创新点包括:

  1. 引入高斯核函数和自定义卷积层:使用高斯核函数来计算输入片段与卷积核之间的相似性,增加了模型的灵活性和非线性特征提取能力。
  2. 自定义回调函数:用于在每个 epoch 结束时输出训练进度,提供更详细的训练信息,便于实时监控和调整模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/18466.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络-BGP基础概念

一、BGP的基本概念 BGP是一种实现自治系统AS之间的路由可达,并选择最佳路由的矢量性协议。早期发布的三个版本分别是BGP-1(RFC1105)、BGP-2(RFC1163)和BGP-3(RFC1267),1994年开始使用…

TiDB-从0到1-MVCC

TiDB从0到1系列 TiDB-从0到1-体系结构TiDB-从0到1-分布式存储TiDB-从0到1-分布式事务TiDB-从0到1-MVCC 一、MVCC Multi-Version Concurrency Control 多版本并发控制,其主要解决了读并发的问题。 其维持一个数据的多个版本使读写操作没有冲突。也就是说数据元素X…

虚拟机报错:VMX 进程已提前退出。VMware Workstation 无法连接到虚拟机。

解决报错:VMware Workstation 无法连接到虚拟机。请确保您有权运行该程序、访问该程序使用的所有目录以及访问所有临时文件目录。 VMX 进程已提前退出。 解决方案:右键桌面图标进入VMware Workstation Pro的属性设置,兼容性–勾选“以管理员…

【windows】Total Uninstall:一款功能强大的完全卸载软件

软件介绍 Total Uninstall是一款专业的软件卸载工具,旨在帮助用户彻底地清除计算机上的应用程序,包括与应用程序相关的所有文件和注册表项。以下是Total Uninstall的一些主要功能和特点: 完全卸载:软件可以监视应用程序的安装过程…

【C++题解】1321. 时钟旋转(2)

问题:1321. 时钟旋转(2) 类型:字符串 题目描述: 时钟从时间:xx:xx(xx时xx分),走到时间:xx:xx(xx时xx分),时针共旋转了多…

uniapp一些问题解决

1.按钮边框如何去除? 参考博主:微信小程序按钮去不掉边框_微信小程序button去掉边框-CSDN博客文章浏览阅读1k次。最近在学uni-app,顺便自己写个小程序。左上角放了个button,可边框怎么也去不掉…原来微信小程序的按钮要去掉边框要…

新零售数据中台:打造智能商业运营的核心引擎_光点科技

随着数字化转型的浪潮席卷全球,新零售行业正在经历一场前所未有的革新。在这一过程中,“新零售数据中台”逐渐成为企业构建智能商业运营的核心引擎。本文将重点介绍新零售数据中台的概念、其在新零售中的作用,以及如何通过数据中台实现商业价…

基于YOLOV8/YOLOV5的远距离停车场车位检测识别系统

摘要: 在本文中深入探讨了基于YOLOv8/v7/v6/v5的停车位检测系统, 开发远距离停车位检测系统对于提高停车效率具有关键作用。。本系统核心采用YOLOv8技术,并整合了YOLOv7、YOLOv6、YOLOv5算法,以便进行性能指标对比。深入解释了YOL…

【QT环境配置】节约msvc2017灰色不可用问题

1. 问题 msvc2017不可用,2019、2022都同理解决。 2. 解决 第一步:打开控制面板->程序->程序和功能->找到自己安装的vs程序->鼠标右键后出现卸载更改->点击更改。 找到下面组件即可。(msvc2019就找msvcv142) …

SQL刷题笔记day5

SQL218题目 我的错误代码: select de.dept_no,de.emp_no,s.salary from employees e join dept_emp de on de.emp_no e.emp_no join salaries s on s.emp_no e.emp_no where de.dept_no not in dept_manager.dept_no #not in 好像不能直接这样用 这里报错 正确代…

宝兰德入选“鑫智奖·2024金融数据智能运维创新优秀解决方案”榜单

近日,由金科创新社主办、全球金融专业人士协会支持的“2024 鑫智奖第六届金融数据智能优秀解决方案”评选结果正式公布。凭借卓越的技术实力和方案能力,宝兰德「智能全链路性能监控解决方案」从90个参选方案中脱颖而出,荣誉入选“鑫智奖2024金…

【ArcGISPro】3.1.5下载和安装教程

下载教程 arcgis下载地址:Трекер (rutracker.net) 点击磁力链下载弹出对应的软件进行下载 ArcGISPro3.1新特性 ArcGIS Pro 3.1是ArcGIS Pro的最新版本,它引入了一些新的特性和功能,以提高用户的工作效率和数据分析能力。以下是ArcGIS…

Vue进阶之Vue项目实战(四)

Vue项目实战 出码功能知识介绍渲染器性能调优使用 vue devtools 进行分析使用“渲染”进行分析判断打包构建的产物是否符合预期安装插件使用位置使用过程使用lighthouse分析页面加载情况使用performance分析页面加载情况应用自动化部署与发布CI/CD常见的CI/CD服务出码功能 出码…

香橙派OrangePi AIpro上手笔记——之USB摄像头目标检测方案测试(二)

前期笔记回顾 香橙派OrangePi AIpro上手笔记——之USB摄像头目标检测方案测试(一) 本章前言 在上一章节:测试笔记(一)中,我们已经掌握并搭建了板卡的初步调试环境。 接下来,我们将逐步上手官方的…

c 的库函数有哪些

C语言的库函数非常丰富,涵盖了多种功能,为程序员提供了大量的工具来完成各种任务。以下是一些主要的C语言库函数及其分类: 标准输入输出函数: printf():用于输出格式化的数据到标准输出设备。scanf():用于…

抠像标签合并到原图,jpg 和 png合并,查看标签是否准确

抠像 原图 和 标签合并,查看抠像是否准确 合并后的图,是带有 羽化 效果的 import osimport cv2 import numpy as npdef apply_mask_with_feathering(original_image_path, mask_image_path):# 读取原图和mask图original_image cv2.imread(original_im…

[Halcon学习笔记]Halcon窗口进行等比例显示图像

目录 需求分析Halcon显示原理显示实现具体实现Halcon代码 需求分析 在使用Halcon加载图像时,点击Halcon的适应窗口,图像都会按照窗口大小对图像进行拉伸后显示,实际项目中,需要等比例显示图像,体现图像原本的尺寸细节…

抖音和快手哪个好?来全面了解一下他们的区别!

快手和抖音虽然是短视频领域的两大主流平台,但是两者也存在本质的区别,从产品定位、用户群体到视频风格、变现模式,它们的特征都不一样。 (一)两个平台核心区别: 1. 核心用户不一样:抖音以1、…

dubbo复习:(7)使用sentinel对dubbo服务进行限流

一、下载sentinel-dashboard 并启动 java -Dserver.port8080 -Dcsp.sentinel.dashboard.serverlocalhost:8080 -Dproject.namesentinel-dashboard -jar sentinel-dashboard.jar二、在spring boot应用中增加sentinel相关依赖 <dependency><groupId>com.alibaba.csp…

护网在即,请拿你走你的蓝队神器!~

前言 养兵千日用兵一时&#xff0c;护网已经临近了&#xff0c;你是不是还在考虑现场一系列可能发生的情况&#xff1f;提前找好工具,避免在甲方面前太尴尬? 你需要它&#xff01; 据我了解&#xff0c;去年国护的时候就已经有不少攻城狮在使用我们的蓝队应急响应工具箱&am…